A Review of High-Performance Computational Strategies for Modeling and Imaging of Electromagnetic Induction Data

Many geoscientific applications exploit electrostatic and electromagnetic fields to interrogate and map subsurface electrical resistivity—an important geophysical attribute for characterizing mineral, energy, and water resources. In complex three-dimensional geologies, where many of these resources remain to be found, resistivity mapping requires large-scale modeling and imaging capabilities, as well as the ability to treat significant data volumes, which can easily overwhelm single-core and modest multicore computing hardware. To treat such problems requires large-scale parallel computational resources, necessary for reducing the time to solution to a time frame acceptable to the exploration process. The recognition that significant parallel computing processes must be brought to bear on these problems gives rise to choices that must be made in parallel computing hardware and software. In this review, some of these choices are presented, along with the resulting trade-offs. We also discuss future trends in high-performance computing and the anticipated impact on electromagnetic (EM) geophysics. Topics discussed in this review article include a survey of parallel computing platforms, graphics processing units to multicore CPUs with a fast interconnect, along with effective parallel solvers and associated solver libraries effective for inductive EM modeling and imaging.

[1]  Gerald W. Hohmann,et al.  Magnetotelluric responses of three-dimensional bodies in layered earths , 1982 .

[2]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[3]  Klaus Spitzer,et al.  Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography , 2007 .

[4]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[5]  Alan G. Jones,et al.  Electromagnetic imaging of a complex ore body: 3D forward modeling, sensitivity tests, and down-mine measurements , 2007 .

[6]  Robert S. White,et al.  Seeing through a glass, darkly: strategies for imaging through basalt , 2005 .

[7]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[8]  J. Shadid,et al.  Three‐dimensional wideband electromagnetic modeling on massively parallel computers , 1996 .

[9]  Chao-Tung Yang,et al.  Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters , 2011, Comput. Phys. Commun..

[10]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator , 1996 .

[11]  G. Michael Hoversten,et al.  Marine magnetotellurics for base-of-salt mapping : Gulf of Mexico field test at the Gemini structure , 2000 .

[12]  James Demmel,et al.  SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems , 2003, TOMS.

[13]  Christoph Schwarzbach,et al.  Two‐dimensional inversion of direct current resistivity data using a parallel, multi‐objective genetic algorithm , 2005 .

[14]  Michael Commer,et al.  Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion , 2009 .

[15]  Michael J. Tompkins,et al.  Frequency-Domain EM Modeling of 3D Anisotropic Magnetic Permeability and Analytical Analysis , 2012 .

[16]  Douglas W. Oldenburg,et al.  Three dimensional inversion of multisource time domain electromagnetic data , 2013 .

[17]  T. Habashy,et al.  Rapid 2.5‐dimensional forward modeling and inversion via a new nonlinear scattering approximation , 1994 .

[18]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[19]  Nuno V. da Silva,et al.  A finite element multifrontal method for 3D CSEM modeling in the frequency domain , 2012 .

[20]  James J. Carazzone,et al.  Three Dimensional Imaging of Marine CSEM Data , 2005 .

[21]  David Andreis,et al.  Controlled-source electromagnetic imaging on the Nuggets-1 reservoir , 2006 .

[22]  John N. Shadid,et al.  Official Aztec user''s guide: version 2.1 , 1999 .

[23]  Gregory A. Newman,et al.  20. Electromagnetic Modeling and Inversion on Massively Parallel Computers , 1999 .

[24]  Michael Commer,et al.  Massively parallel electrical-conductivity imaging of hydrocarbons using the IBM Blue Gene/L supercomputer , 2008, IBM J. Res. Dev..

[25]  O. Ernst,et al.  Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection , 2008 .

[26]  Jeffrey S. Ovall,et al.  A parallel goal-oriented adaptive finite element method for 2.5-D electromagnetic modelling , 2011 .

[27]  Jinsong Chen,et al.  Effects of uncertainty in rock‐physics models on reservoir parameter estimation using seismic amplitude variation with angle and controlled‐source electromagnetics data , 2009 .

[28]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[29]  T. Habashy,et al.  A two-step linear inversion of two-dimensional electrical conductivity , 1995 .

[30]  Astrid Kornberg Bjørke,et al.  3D Inversion of Marine CSEM Data Using a Fast Finite-difference Time-domain Forward Code And Approximate Hessian-based Optimization , 2008 .

[31]  Orion S. Lawlor,et al.  Message passing for GPGPU clusters: CudaMPI , 2009, 2009 IEEE International Conference on Cluster Computing and Workshops.

[32]  Michael Commer,et al.  Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth: finite-element frequency-domain approach , 2013 .

[33]  G. W. Hohmann Three-Dimensional Induced Polarization and Electromagnetic Modeling , 1975 .

[34]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[35]  G. Newman,et al.  Three-dimensional magnetotelluric inversion using non-linear conjugate gradients , 2000 .

[36]  Michael Commer,et al.  Iterative Krylov solution methods for geophysical electromagnetic simulations on throughput-oriented processing units , 2012, Int. J. High Perform. Comput. Appl..

[37]  Randall L. Mackie,et al.  Conjugate direction relaxation solutions for 3-d magnetotelluric modeling , 1993 .

[38]  K. Spitzer A 3-D FINITE-DIFFERENCE ALGORITHM FOR DC RESISTIVITY MODELLING USING CONJUGATE GRADIENT METHODS , 1995 .

[39]  G. W. Hohmann,et al.  A finite-difference, time-domain solution for three-dimensional electromagnetic modeling , 1993 .

[40]  René-Édouard Plessix,et al.  Resistivity imaging with controlled-source electromagnetic data: depth and data weighting , 2008 .

[41]  David L. Alumbaugh,et al.  3D time-domain simulation of electromagnetic diffusion phenomena: A finite-element electric-field approach , 2010 .

[42]  Michael Commer,et al.  New advances in three dimensional transient electromagnetic inversion , 2004 .

[43]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[44]  J. T. Smith,et al.  Rapid inversion of two‐ and three‐dimensional magnetotelluric data , 1991 .

[45]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[46]  G. C. Fox,et al.  Solving Problems on Concurrent Processors , 1988 .

[47]  Jinsong Chen,et al.  Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site , 2012 .

[48]  Nie Lichao,et al.  3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction , 2012 .

[49]  René-Édouard Plessix,et al.  3D CSEM modeling and inversion in complex geologic settings , 2007 .

[50]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[51]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004, Future Gener. Comput. Syst..

[52]  Daniele Colombo,et al.  Integrated seismic-electromagnetic workflow for sub-basalt exploration in northwest Saudi Arabia , 2012 .

[53]  Svein Ellingsrud,et al.  The Meter Reader—Remote sensing of hydrocarbon layers by seabed logging (SBL): Results from a cruise offshore Angola , 2002 .

[54]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[55]  René-Édouard Plessix,et al.  Regularized and Blocky 3D Controlled Source Electromagnetic Inversion , 2008 .

[56]  Y. Rubin,et al.  A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .

[57]  Gregory A. Newman,et al.  Transient electromagnetic response of a three-dimensional body in a layered earth , 1986 .

[58]  Vladimir Druskin,et al.  New spectral Lanczos decomposition method for induction modeling in arbitrary 3-D geometry , 1999 .

[59]  Richard C. Bailey,et al.  An accurate and robust multigrid algorithm for 2D forward resistivity modelling , 2004 .

[60]  Guillaume Houzeaux,et al.  A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling , 2013 .

[61]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[62]  G. A. Newman,et al.  Imaging CSEM data in the presence of electrical anisotropy - eScholarship , 2010 .

[63]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[64]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[65]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[66]  John D. Owens,et al.  Message passing on data-parallel architectures , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[67]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[68]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[69]  Michael Commer,et al.  Massively parallel electrical conductivity imaging of the subsurface: Applications to hydrocarbon exploration , 2009 .

[71]  D. L. Alumbaugh,et al.  Three-dimensional electromagnetic modeling and inversion on massively parallel computers , 1996 .

[72]  O. Schenk,et al.  ON FAST FACTORIZATION PIVOTING METHODS FOR SPARSE SYMMETRI C INDEFINITE SYSTEMS , 2006 .

[73]  Jianlin Xia,et al.  Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3-D anisotropic media , 2012 .

[74]  Lucy MacGregor,et al.  Sea Bed Logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas , 2002 .

[75]  M. Zhdanov,et al.  Rigorous 3D inversion of marine CSEM data based on the integral equation method , 2007 .

[76]  J. Craig Mudge,et al.  Evolving Inversion Methods in Geophysics with Cloud Computing - A Case Study of an eScience Collaboration , 2011, 2011 IEEE Seventh International Conference on eScience.

[77]  Christoph Schwarzbach,et al.  Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—a marine CSEM example , 2011 .

[78]  Eldad Haber,et al.  Finite element based inversion for time-harmonic electromagnetic problems , 2013 .

[79]  Michael Commer,et al.  New advances in three‐dimensional controlled‐source electromagnetic inversion , 2007 .

[80]  J. T. Smith Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis , 1996 .

[81]  G. Newman,et al.  Three-dimensional massively parallel electromagnetic inversion—II. Analysis of a crosswell electromagnetic experiment , 1997 .

[82]  Steven Constable,et al.  Marine electromagnetic methods—A new tool for offshore exploration , 2006 .

[83]  Alan D. Chave,et al.  Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints , 2009 .

[84]  Michael Commer,et al.  Inversion study of a large marine CSEM survey , 2008 .

[85]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[86]  Alexander V. Grayver,et al.  Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver , 2013 .