Super-high-frequency oscillations in a discontinuous dynamic system with time delay

AbstractWe study oscillations in the discontinuous dynamic system with time delay $$\dot x(t) = - sign x(t - 1) + F(x(t),t), t \geqslant 0$$ . This is a typical model of relay feedback with delay. It is known that stable modes in this system have a bounded oscillation frequency. Here we consider transient processes and obtain the following result: under some restrictions ofF, the average oscillation frequency of any solution becomes finite after a period of time, i.e. super-high-frequency oscillations (with infinite frequency) exist only in a finite time interval. Moreover, we give an effective upper bound on the length of this interval.

[1]  Johannes André,et al.  Über stückweise lineare Differentialgleichungen, die bei Regelungsproblemen auftreten I , 1956 .

[2]  P. Müller E. F. Beckenbach and R. Bellman, Inequalities. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 30.) XII + 198 S. m. 6 Abb. Berlin/Göttingen/Heidelberg 1961. Springer‐Verlag. Preis Brosch. DM 48,60 , 1962 .

[3]  J. Hale Theory of Functional Differential Equations , 1977 .

[4]  H. Walther Density of slowly oscillating solutions of ẋ(t) = −f(x(t − 1)) , 1981 .

[5]  D. Saupe Global bifurcation of periodic solutions to some autonomous differential delay equations , 1983 .

[6]  J. Mallet-Paret,et al.  A BIFURCATION GAP FOR A SINGULARLY PERTURBED DELAY EQUATION , 1986 .

[7]  Shui-Nee Chow,et al.  Characteristic multipliers and stability of symmetric periodic solutions of x'(t)=g(x(t−1)) , 1988 .

[8]  J. Mallet-Paret Morse Decompositions for delay-differential equations , 1988 .

[9]  H. Walther An invariant manifold of slowly oscillating solutions for , 1991 .

[10]  J. Karl Hedrick,et al.  Sliding Mode Fuel-Injection Controller: Its Advantages , 1991 .

[11]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[12]  J. Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. , 1992 .

[13]  Shustin E.I. Fridman È.M.,et al.  Steady modes in discontinuous control systems with time delay , 1993 .