New Numerical Results for the Surface Quasi-Geostrophic Equation

[1]  Takashi Sakajo,et al.  Oscillatory damping in long-time evolution of the surface quasi-geostrophic equations with generalized viscosity: a numerical study , 2010 .

[2]  Dong Li,et al.  Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions , 2009 .

[3]  Nataša Pavlović,et al.  Regularity Criteria for the Dissipative Quasi-Geostrophic Equations in Hölder Spaces , 2009 .

[4]  Dong Li,et al.  Blow Up for the Generalized Surface Quasi-Geostrophic Equation with Supercritical Dissipation , 2009 .

[5]  Dongho Chae,et al.  The geometric approaches to the possible singularities in the inviscid fluid flows , 2008 .

[6]  F. Marchand,et al.  Weak strong uniqueness criteria for the critical quasi-geostrophic equation , 2008 .

[7]  L. Debnath Geophysical Fluid Dynamics , 2008 .

[8]  José A. Carrillo,et al.  The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations , 2008 .

[9]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[10]  Hongjie Dong,et al.  Spatial Analyticity of the Solutions to the Subcritical Dissipative Quasi-geostrophic Equations , 2008 .

[11]  Hongjie Dong,et al.  Finite time singularities for a class of generalized surface quasi-geostrophic equations , 2008 .

[12]  Jiahong Wu,et al.  Existence and uniqueness results for the 2-D dissipative quasi-geostrophic equation , 2007 .

[13]  Natasa Pavlovic,et al.  A regularity criterion for the dissipative quasi-geostrophic equations , 2007, 0710.5201.

[14]  F. Marchand Existence and Regularity of Weak Solutions to the Quasi-Geostrophic Equations in the Spaces Lp or $$\dot{H}^{-1/2}$$ , 2007 .

[15]  Qionglei Chen,et al.  Global well-posedness of the 2D critical dissipative quasi-geostrophic equation in the Triebel–Lizorkin spaces , 2007 .

[16]  Zhifei Zhang,et al.  Global well-posedness for the 2D critical dissipative quasi-geostrophic equation , 2007 .

[17]  Taoufik Hmidi,et al.  On the Global Well-Posedness of the Critical Quasi-Geostrophic Equation , 2007, SIAM J. Math. Anal..

[18]  Hongjie Dong,et al.  Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space , 2007, math/0701828.

[19]  P. Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2007, math/0701592.

[20]  P. Constantin,et al.  Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.

[21]  T. Hou,et al.  Computing nearly singular solutions using pseudo-spectral methods , 2007, J. Comput. Phys..

[22]  Bo-Qing Dong,et al.  Asymptotic stability of the critical and super-critical dissipative quasi-geostrophic equation , 2006 .

[23]  Taoufik Hmidi,et al.  Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces , 2006, math/0611494.

[24]  Xinwei Yu Remarks on the Global Regularity for the Super-Critical 2D Dissipative Quasi-Geostrophic Equation , 2006, math/0611283.

[25]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[26]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[27]  Dongho Chae,et al.  On the Regularity Conditions for the Dissipative Quasi-geostrophic Equations , 2006, SIAM J. Math. Anal..

[28]  Ning Ju,et al.  Geometric constrains for global regularity of 2D quasi-geostrophic flows , 2006 .

[29]  Zhifei Zhang,et al.  A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation , 2006, math/0607020.

[30]  Hideyuki Miura,et al.  Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space , 2006 .

[31]  Jiahong Wu,et al.  Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized Navier-Stokes Equations in Besov Spaces , 2006 .

[32]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2006, math/0604185.

[33]  T. Hou,et al.  Level set dynamics and the non-blowup of the 2D quasi-geostrophic equation , 2006, math/0601427.

[34]  Zhang Zhifei,et al.  Well-posedness for the 2D dissipative quasigeostrophic equations in the Besov space , 2005 .

[35]  Yong Zhou,et al.  Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows , 2005 .

[36]  Pierre Gilles Lemarié-Rieusset,et al.  Solutions auto-similaires non radiales pour l'équation quasi-géostrophique dissipative critique , 2005 .

[37]  Maria E. Schonbek,et al.  Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows , 2005 .

[38]  Jiahong Wu,et al.  Solutions of the 2D quasi-geostrophic equation in Hölder spaces , 2005 .

[39]  Jose L. Rodrigo,et al.  On the evolution of sharp fronts for the quasi‐geostrophic equation , 2005 .

[40]  M. Fontelos,et al.  Evidence of singularities for a family of contour dynamics equations , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Ning Ju,et al.  The Maximum Principle and the Global Attractor for the Dissipative 2D Quasi-Geostrophic Equations , 2005 .

[42]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[43]  José Luis Rodrigo,et al.  The vortex patch problem for the surface quasi-geostrophic equation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Dongho Chae,et al.  Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations , 2003 .

[45]  Dongho Chae,et al.  The quasi-geostrophic equation in the Triebel–Lizorkin spaces , 2003 .

[46]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[47]  Charles Fefferman,et al.  Scalars convected by a two‐dimensional incompressible flow , 2002 .

[48]  Jiahong Wu,et al.  THE QUASI-GEOSTROPHIC EQUATION AND ITS TWO REGULARIZATIONS , 2002 .

[49]  C. Fefferman,et al.  Behavior of several two-dimensional fluid equations in singular scenarios , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  P. Constantin,et al.  On the critical dissipative quasi-geostrophic equation , 2001, math/0103040.

[51]  C. Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001, math/0101243.

[52]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[53]  D. Córdoba Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.

[54]  Norbert Schorghofer,et al.  Nonsingular surface quasi-geostrophic flow , 1998, math/9805027.

[55]  Jiahong Wu,et al.  Quasi-geostrophic-type equations with initial data in Morrey spaces , 1997 .

[56]  Michio Yamada,et al.  Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow , 1997 .

[57]  Andrew J. Majda,et al.  A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow , 1996 .

[58]  K. Swanson,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[59]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[60]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[61]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[62]  W. Blumen,et al.  Uniform Potential Vorticity Flow: Part II. A Model of Wave Interacions. , 1978 .

[63]  W. Blumen,et al.  Uniform Potential Vorticity Flow: Part I. Theory of Wave Interactions and Two-Dimensional Turbulence , 1978 .

[64]  A. Kiselev,et al.  SOME RECENT RESULTS ON THE CRITICAL SURFACE QUASI-GEOSTROPHIC EQUATION : A REVIEW , 2009 .

[65]  Peter Constantin,et al.  Euler Equations, Navier-Stokes Equations and Turbulence , 2006 .

[66]  Fabien Marchand,et al.  Propagation of Sobolev regularity for the critical dissipative quasi-geostrophic equation , 2006, Asymptot. Anal..

[67]  Marco Cannone,et al.  Mathematical Foundation of Turbulent Viscous Flows , 2006 .

[68]  Jiahong Wu,et al.  Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces , 2005, SIAM J. Math. Anal..

[69]  Jiahong Wu,et al.  The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation , 2005 .

[70]  Jiahong Wu,et al.  The generalized incompressible Navier-Stokes equations in Besov spaces , 2004 .

[71]  M. Schonbek,et al.  Asymptotic Behavior to Dissipative Quasi-Geostrophic Flows , 2003, SIAM J. Math. Anal..

[72]  A. Majda Introduction to PDEs and Waves in Atmosphere and Ocean , 2003 .

[73]  Jiahong Wu,et al.  Dissipative quasi-geostrophic equations with L p data , 2001 .

[74]  Dongming Wei,et al.  DECAY ESTIMATES OF HEAT TRANSFER TO MELTON POLYMER FLOW IN PIPES WITH VISCOUS DISSIPATION , 2001 .

[75]  Jiahong Wu,et al.  Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic equations , 1997 .

[76]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[77]  JiahongWu Solutions of the 2 D quasi-geostrophic equation in Hölder spaces , 2022 .