Cylindrical contact homology of subcritical Stein-fillable contact manifolds

We use contact handle decompositions and a stabilization process to compute the cylindrical contact homology of a subcritical Stein-fillable contact manifold with vanishing first Chern class, and show that it is completely determined by the homology of a subcritical Stein-filling of the contact manifold.

[1]  E. Zehnder,et al.  Compactness results in Symplectic Field Theory , 2003, math/0308183.

[2]  Yu. V. Chekanov Differential algebra of Legendrian links , 2002 .

[3]  F. Bourgeois A Morse-Bott approach to contact homology , 2002 .

[4]  H. Hofer,et al.  Introduction to Symplectic Field Theory , 2000, math/0010059.

[5]  K. Honda On the classification of tight contact structures I , 1999, math/9910127.

[6]  K. Zehnder,et al.  A characterization of the tight 3‐sphere II , 1999 .

[7]  Ilya Ustilovsky Infinitely many contact structures on S4m + 1 , 1999 .

[8]  E. Zehnder,et al.  Properties of Pseudoholomorphic Curves in Symplectizations III: Fredholm Theory , 1999 .

[9]  Kouhei Honda On the Classi cation of Tight Contact Structures I: Lens Spaces , 1999 .

[10]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[11]  Y. Eliashberg Symplectic topology in the nineties , 1998 .

[12]  C. Thomas INTRODUCTION TO SYMPLECTIC TOPOLOGY (Oxford Mathematical Monographs) , 1997 .

[13]  H. Geiges Applications of contact surgery , 1997 .

[14]  P. Kronheimer,et al.  Monopoles and contact structures , 1997 .

[15]  Yu. V. Chekanov Differential algebras of Legendrian links , 1997, math/9709233.

[16]  Y. Eliashberg Symplectic geometry of plurisubharmonic functions , 1997 .

[17]  G. Sabidussi,et al.  Gauge theory and symplectic geometry , 1997 .

[18]  E. Zehnder,et al.  Properties of pseudoholomorphic curves in symplectisations. I : asymptotics , 1996 .

[19]  E. Zehnder,et al.  A characterisation of the tight three-sphere , 1995 .

[20]  Dusa McDuff,et al.  Introduction to Symplectic Topology , 1995 .

[21]  D. Salamon,et al.  J-Holomorphic Curves and Quantum Cohomology , 1994 .

[22]  Emmanuel Giroux Une structure de contact, même tendue, est plus ou moins tordue , 1994 .

[23]  H. Geiges Contact structures on (n − 1)-connected (2n + 1)-manifolds , 1993 .

[24]  Joel W. Robbin,et al.  The Maslov index for paths , 1993 .

[25]  D. Salamon,et al.  Morse theory for periodic solutions of hamiltonian systems and the maslov index , 1992 .

[26]  Kai Cieliebak,et al.  Symplectic Geometry , 1992, New Spaces in Physics.

[27]  A. Weinstein Contact surgery and symplectic handlebodies , 1991 .

[28]  Y. Eliashberg TOPOLOGICAL CHARACTERIZATION OF STEIN MANIFOLDS OF DIMENSION >2 , 1990 .

[29]  Y. Eliashberg Classification of overtwisted contact structures on 3-manifolds , 1989 .

[30]  C. Thomas Contact structures on (n-1)-connected (2n+1)-manifolds , 1986 .

[31]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[32]  C. Conley,et al.  Morse‐type index theory for flows and periodic solutions for Hamiltonian Equations , 1984 .

[33]  R. Lutz Structures de contact sur les fibrés principaux en cercles de dimension trois , 1977 .

[34]  J. Martinet Formes de Contact sur les Variétés de Dimension 3 , 1971 .

[35]  Charles Terence Clegg Wall,et al.  Proceedings of Liverpool Singularities Symposium II , 1971 .

[36]  J. Gray SOME GLOBAL PROPERTIES OF CONTACT STRUCTURES , 1959 .

[37]  F. Bourgeois Introduction to Contact Homology , 2022 .