Goal-oriented representations in the human hippocampus during planning and navigation

[1]  Christian F. Doeller,et al.  Mnemonic construction and representation of temporal structure in the hippocampal formation , 2022, Nature Communications.

[2]  Thackery I. Brown,et al.  Environmental overlap influences goal‐oriented coding of spatial sequences differently along the long‐axis of hippocampus , 2022, Hippocampus.

[3]  K. Norman,et al.  A neural network model of when to retrieve and encode episodic memories , 2022, eLife.

[4]  R. O’Reilly,et al.  The Structure of Systematicity in the Brain , 2021, Current directions in psychological science.

[5]  Morgan D. Barense,et al.  Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation , 2021, bioRxiv.

[6]  Seongmin A. Park,et al.  Cognitive maps and novel inferences: a flexibility hierarchy , 2021, Current Opinion in Behavioral Sciences.

[7]  J. S. Guntupalli,et al.  Clone-structured graph representations enable flexible learning and vicarious evaluation of cognitive maps , 2021, Nature Communications.

[8]  Demetris K. Roumis,et al.  Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice , 2021, Neuron.

[9]  Charan Ranganath,et al.  Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps , 2020, Neuron.

[10]  Ida Momennejad,et al.  Predictive Representations in Hippocampal and Prefrontal Hierarchies , 2019, The Journal of Neuroscience.

[11]  Karl J. Friston,et al.  Prediction and memory: A predictive coding account , 2020, Progress in neurobiology.

[12]  Peter Dayan,et al.  The roles of online and offline replay in planning , 2020, bioRxiv.

[13]  I. Momennejad Learning Structures: Predictive Representations, Replay, and Generalization , 2020, Current Opinion in Behavioral Sciences.

[14]  Christopher Summerfield,et al.  Structure learning and the posterior parietal cortex , 2020, Progress in Neurobiology.

[15]  John L Kubie,et al.  Is hippocampal remapping the physiological basis for context? , 2019, Hippocampus.

[16]  Caswell Barry,et al.  The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation , 2019, Cell.

[17]  Matthew A. Wilson,et al.  Hippocampal remapping as hidden state inference , 2019, bioRxiv.

[18]  Lisa M. Giocomo,et al.  Remembered reward locations restructure entorhinal spatial maps , 2019, Science.

[19]  Jozsef Csicsvari,et al.  The entorhinal cognitive map is attracted to goals , 2019, Science.

[20]  Roshan Cools,et al.  Faculty Opinions recommendation of The successor representation: its computational logic and neural substrates. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[21]  Morris Moscovitch,et al.  Hippocampal and Retrosplenial Goal Distance Coding After Long-term Consolidation of a Real-World Environment , 2019, Cerebral cortex.

[22]  Peter Gärdenfors,et al.  Navigating cognition: Spatial codes for human thinking , 2018, Science.

[23]  Zeb Kurth-Nelson,et al.  What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior , 2018, Neuron.

[24]  Arne D. Ekstrom,et al.  Space, time, and episodic memory: The hippocampus is all over the cognitive map , 2018, Hippocampus.

[25]  Samuel J Gershman,et al.  The Successor Representation: Its Computational Logic and Neural Substrates , 2018, The Journal of Neuroscience.

[26]  Jeffrey L. Gauthier,et al.  A Dedicated Population for Reward Coding in the Hippocampus , 2018, Neuron.

[27]  Morgan D. Barense,et al.  Boundaries Shape Cognitive Representations of Spaces and Events , 2018, Trends in Cognitive Sciences.

[28]  Marcelo G Mattar,et al.  Prioritized memory access explains planning and hippocampal replay , 2017, Nature Neuroscience.

[29]  H. Eichenbaum On the Integration of Space, Time, and Memory , 2017, Neuron.

[30]  Derek J. Huffman,et al.  The influence of low-level stimulus features on the representation of contexts, items, and their mnemonic associations , 2017, NeuroImage.

[31]  Kimberly L. Stachenfeld,et al.  The hippocampus as a predictive map , 2017, Nature Neuroscience.

[32]  Halle R. Dimsdale-Zucker,et al.  CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields , 2017, bioRxiv.

[33]  Christian F. Doeller,et al.  The Role of Mental Maps in Decision-Making , 2017, Trends in Neurosciences.

[34]  Raymond J Dolan,et al.  A map of abstract relational knowledge in the human hippocampal–entorhinal cortex , 2017, eLife.

[35]  Dmitriy Aronov,et al.  Mapping of a non-spatial dimension by the hippocampal/entorhinal circuit , 2017, Nature.

[36]  Brice A. Kuhl,et al.  Overlap among Spatial Memories Triggers Repulsion of Hippocampal Representations , 2017, Current Biology.

[37]  Nicolas W. Schuck,et al.  Human Orbitofrontal Cortex Represents a Cognitive Map of State Space , 2016, Neuron.

[38]  Daniel L Schacter,et al.  Remembering the past and imagining the future: Identifying and enhancing the contribution of episodic memory , 2016, Memory studies.

[39]  Valerie A. Carr,et al.  Prospective representation of navigational goals in the human hippocampus , 2016, Science.

[40]  Andrew M. Wikenheiser,et al.  Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex , 2016, Nature Reviews Neuroscience.

[41]  D. Hassabis,et al.  Neural Mechanisms of Hierarchical Planning in a Virtual Subway Network , 2016, Neuron.

[42]  N. Fortin,et al.  Nonspatial Sequence Coding in CA1 Neurons , 2016, The Journal of Neuroscience.

[43]  M. Botvinick,et al.  Statistical learning of temporal community structure in the hippocampus , 2016, Hippocampus.

[44]  D. Bates,et al.  Balancing Type I Error and Power in Linear Mixed Models , 2015, 1511.01864.

[45]  Henrik Singmann,et al.  Analysis of Factorial Experiments , 2015 .

[46]  M. Shapiro,et al.  A Map for Social Navigation in the Human Brain , 2015, Neuron.

[47]  M. Moser,et al.  A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation , 2015, Nature.

[48]  M. Mallar Chakravarty,et al.  Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol , 2015, NeuroImage.

[49]  Russell A. Poldrack,et al.  Orthogonalization of Regressors in fMRI Models , 2015, PloS one.

[50]  Chenglin Miao,et al.  Place cells in the hippocampus: Eleven maps for eleven rooms , 2014, Proceedings of the National Academy of Sciences.

[51]  Russell A. Poldrack,et al.  The impact of study design on pattern estimation for single-trial multivariate pattern analysis , 2014, NeuroImage.

[52]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[53]  Blake S. Porter,et al.  Hippocampal Representation of Related and Opposing Memories Develop within Distinct, Hierarchically Organized Neural Schemas , 2014, Neuron.

[54]  Thackery I. Brown,et al.  A High‐resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory , 2014, Hippocampus.

[55]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[56]  R. Knight,et al.  The Hippocampus and Entorhinal Cortex Encode the Path and Euclidean Distances to Goals during Navigation , 2014, Current Biology.

[57]  S. Dehaene,et al.  Characterizing the dynamics of mental representations: the temporal generalization method , 2014, Trends in Cognitive Sciences.

[58]  Matthias J. Gruber,et al.  Hippocampal Activity Patterns Carry Information about Objects in Temporal Context , 2014, Neuron.

[59]  Kristjan Kalm,et al.  Individual Sequence Representations in the Medial Temporal Lobe , 2013, Journal of Cognitive Neuroscience.

[60]  Howard Eichenbaum,et al.  Learning Causes Reorganization of Neuronal Firing Patterns to Represent Related Experiences within a Hippocampal Schema , 2013, The Journal of Neuroscience.

[61]  Hallvard Røe Evensmoen,et al.  Long-axis specialization of the human hippocampus , 2013, Trends in Cognitive Sciences.

[62]  Brad E. Pfeiffer,et al.  Hippocampal place cell sequences depict future paths to remembered goals , 2013, Nature.

[63]  D. Barr,et al.  Random effects structure for confirmatory hypothesis testing: Keep it maximal. , 2013, Journal of memory and language.

[64]  Russell A. Poldrack,et al.  Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs , 2012, NeuroImage.

[65]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[66]  Russell A. Poldrack,et al.  Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses , 2012, NeuroImage.

[67]  D. Schacter,et al.  The Hippocampus and Imagining the Future: Where Do We Stand? , 2011, Front. Hum. Neurosci..

[68]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[69]  J. O’Neill,et al.  The reorganization and reactivation of hippocampal maps predict spatial memory performance , 2010, Nature Neuroscience.

[70]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[71]  S. Pollmann,et al.  Retinotopic Activation in Response to Subjective Contours in Primary Visual Cortex , 2008, Frontiers in human neuroscience.

[72]  Adam Johnson,et al.  Neural Ensembles in CA3 Transiently Encode Paths Forward of the Animal at a Decision Point , 2007, The Journal of Neuroscience.

[73]  M. Tamosiunaite,et al.  Hippocampal CA1 Place Cells Encode Intended Destination on a Maze with Multiple Choice Points , 2007, The Journal of Neuroscience.

[74]  R. Oostenveld,et al.  Nonparametric statistical testing of EEG- and MEG-data , 2007, Journal of Neuroscience Methods.

[75]  D. Schacter,et al.  The cognitive neuroscience of constructive memory: remembering the past and imagining the future , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[76]  D. Hassabis,et al.  Patients with hippocampal amnesia cannot imagine new experiences , 2007, Proceedings of the National Academy of Sciences.

[77]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[78]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[79]  M. Shapiro,et al.  Prospective and Retrospective Memory Coding in the Hippocampus , 2003, Neuron.

[80]  H. Eichenbaum,et al.  The Hippocampus and Disambiguation of Overlapping Sequences , 2002, The Journal of Neuroscience.

[81]  M. Mehta Neuronal Dynamics of Predictive Coding , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[82]  H. Eichenbaum,et al.  Hippocampal Neurons Encode Information about Different Types of Memory Episodes Occurring in the Same Location , 2000, Neuron.

[83]  M. Wilson,et al.  Trajectory Encoding in the Hippocampus and Entorhinal Cortex , 2000, Neuron.

[84]  B. McNaughton,et al.  Spatial Firing Properties of Hippocampal CA1 Populations in an Environment Containing Two Visually Identical Regions , 1998, The Journal of Neuroscience.

[85]  W E Skaggs,et al.  Interactions between location and task affect the spatial and directional firing of hippocampal neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  R. Muller,et al.  The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  S. R. Searle,et al.  Population Marginal Means in the Linear Model: An Alternative to Least Squares Means , 1980 .

[88]  M. Eckardt The Hippocampus as a Cognitive Map , 1980 .

[89]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[90]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[91]  Nikos Makris,et al.  Automatically parcellating the human cerebral cortex. , 2004, Cerebral cortex.