A 0.45-V 300-MHz 10T Flowthrough SRAM With Expanded write/ read Stability and Speed-Area-Wise Array for Sub-0.5-V Chips
暂无分享,去创建一个
[1] Meng-Fan Chang,et al. A 0.29V embedded NAND-ROM in 90nm CMOS for ultra-low-voltage applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).
[2] Kiyoo Itoh,et al. Adaptive circuits for the 0.5-V nanoscale CMOS era , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[3] C.H. Kim,et al. A Voltage Scalable 0.26 V, 64 kb 8T SRAM With V$_{\min}$ Lowering Techniques and Deep Sleep Mode , 2008, IEEE Journal of Solid-State Circuits.
[4] H. Pilo,et al. An SRAM Design in 65-nm Technology Node Featuring Read and Write-Assist Circuits to Expand Operating Voltage , 2007, IEEE Journal of Solid-State Circuits.
[5] S. Kosonocky,et al. A Sub-600mV, Fluctuation tolerant 65nm CMOS SRAM Array with Dynamic Cell Biasing , 2007, 2007 IEEE Symposium on VLSI Circuits.
[6] Masahiro Nomura,et al. A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications , 2006, IEEE Journal of Solid-State Circuits.
[7] K. Takeda,et al. A read-static-noise-margin-free SRAM cell for low-V/sub dd/ and high-speed applications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..
[8] Koji Nii,et al. A 45-nm Bulk CMOS Embedded SRAM With Improved Immunity Against Process and Temperature Variations , 2008, IEEE Journal of Solid-State Circuits.
[9] Meng-Fan Chang,et al. Wide $V_{\rm DD}$ Embedded Asynchronous SRAM With Dual-Mode Self-Timed Technique for Dynamic Voltage Systems , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.
[10] K. Ishibashi,et al. 0.4-V logic-library-friendly SRAM array using rectangular-diffusion cell and delta-boosted-array voltage scheme , 2004, IEEE Journal of Solid-State Circuits.
[11] Kaushik Roy,et al. A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[12] C. Radens,et al. A Sub-600-mV, Fluctuation Tolerant 65-nm CMOS SRAM Array With Dynamic Cell Biasing , 2008, IEEE Journal of Solid-State Circuits.
[13] T. Sasaki,et al. A 0.7 V Single-Supply SRAM With 0.495 $\mu$m$^{2}$ Cell in 65 nm Technology Utilizing Self-Write-Back Sense Amplifier and Cascaded Bit Line Scheme , 2009, IEEE Journal of Solid-State Circuits.
[14] H. Fujiwara,et al. An Area-Conscious Low-Voltage-Oriented 8T-SRAM Design under DVS Environment , 2007, 2007 IEEE Symposium on VLSI Circuits.
[15] Sasaki Takahiko,et al. A Process-Variation-Tolerant Dual-Power-Supply SRAM with 0.179μm2 Cell in 40nm CMOS Using Level-Programmable Wordline Driver , 2009 .
[16] Meng-Fan Chang,et al. A Differential Data-Aware Power-Supplied (D$^{2}$AP) 8T SRAM Cell With Expanded Write/Read Stabilities for Lower VDDmin Applications , 2009, IEEE Journal of Solid-State Circuits.
[17] Seong-Ook Jung,et al. Numerical Estimation of Yield in Sub-100-nm SRAM Design Using Monte Carlo Simulation , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.
[18] Jason Liu,et al. A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[19] B.C. Paul,et al. Process variation in embedded memories: failure analysis and variation aware architecture , 2005, IEEE Journal of Solid-State Circuits.
[20] Meng-Fan Chang,et al. A differential data aware power-supplied (D2AP) 8T SRAM cell with expanded write/read stabilities for lower VDDmin applications , 2009, 2009 Symposium on VLSI Circuits.
[21] Naveen Verma,et al. A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[22] Mohab Anis,et al. Statistical Design of the 6T SRAM Bit Cell , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.
[23] Shunsuke Okumura,et al. A 0.56-V 128kb 10T SRAM using column line assist (CLA) scheme , 2009, 2009 10th International Symposium on Quality Electronic Design.
[24] K. Roy,et al. A 160 mV Robust Schmitt Trigger Based Subthreshold SRAM , 2007, IEEE Journal of Solid-State Circuits.
[25] Kaushik Roy,et al. A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS , 2009, IEEE Journal of Solid-State Circuits.
[26] R.H. Dennard,et al. An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in High-Performance Caches , 2008, IEEE Journal of Solid-State Circuits.
[27] A. Chandrakasan,et al. A 256kb Sub-threshold SRAM in 65nm CMOS , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.
[28] M. Yabuuchi,et al. A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues , 2008, IEEE Journal of Solid-State Circuits.