Event Based Control

Summary. In spite of the success of traditional sampled-data theory in computer control it has some disadvantages particularly for distributed, asynchronous, and multi-rate system. Event based sampling is an alternative which is explored in this paper. A simple example illustrates the differences between periodic and event based sampling. The architecture of a general structure for event based control is presented. The key elements are an event detector, an observer, and a control signal generator, which can be regarded as a generalized data-hold. Relations to nonlinear systems are discussed. Design of an event based controller is illustrated for a simple model of a micro-mechanical accelerometer.

[1]  V. Jacobson,et al.  Congestion avoidance and control , 1988, CCRV.

[2]  K.L. Turner,et al.  Robust feedback control design of an ultra-sensitive, high bandwidth tunneling accelerometer , 2005, Proceedings of the 2005, American Control Conference, 2005..

[3]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[4]  Hermann Kopetz TIME-TRIGGERED REAL-TIME COMPUTING , 2002 .

[5]  R. Skoog,et al.  On the stability of pulse-width-modulated feedback systems , 1968 .

[6]  James P. Keener,et al.  Mathematical physiology , 1998 .

[7]  Sang Jeong Lee,et al.  Event-based modeling and control for the burnthrough point in sintering processes , 1999, IEEE Trans. Control. Syst. Technol..

[8]  K.-E. Arzen,et al.  How does control timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime , 2003, IEEE Control Systems.

[9]  K. Åström,et al.  Comparison of Periodic and Event Based Sampling for First-Order Stochastic Systems , 1999 .

[10]  G. Goodwin,et al.  Generalized sample hold functions-frequency domain analysis of robustness, sensitivity, and intersample difficulties , 1994, IEEE Trans. Autom. Control..

[11]  Thomas W. Kenny,et al.  A high-precision, wide-bandwidth micromachined tunneling accelerometer , 2001 .

[12]  Alain Bensoussan,et al.  Impulse Control and Quasi-Variational Inequalities , 1984 .

[13]  Brian MacCleery,et al.  Motorcycle control prototyping using an FPGA-based embedded control system , 2006 .

[14]  Vassilis Anastassopoulos,et al.  Delta-Sigma Modulators: Modeling, Design and Applications , 2003 .

[15]  Paul M. Frank,et al.  A continuous-time model for a PFM controller , 1979 .

[16]  K. Åström,et al.  Comparison of Riemann and Lebesgue sampling for first order stochastic systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[17]  Russell K. Hobbie,et al.  Intermediate Physics for Medicine and Biology , 1998 .

[18]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[19]  W. Feller Diffusion processes in one dimension , 1954 .

[20]  Bengt Pettersson,et al.  Production Control of a Complex Integrated Pulp and Paper Mill , 1969 .

[21]  Elbert Hendricks,et al.  Problems in event based engine control , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[22]  Yutaka Yamamoto,et al.  A retrospective view on sampled-data control systems , 1996 .

[23]  M. Nougaret A design method for first-order pulse-width modulated system† , 1972 .

[24]  Bruce A. Francis,et al.  Optimal Sampled-Data Control Systems , 1996, Communications and Control Engineering Series.

[25]  Giorgio Buttazzo,et al.  Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and Applications , 1997 .

[26]  Roberto Horowitz,et al.  A comparative study of the use of the generalized hold function for HDDs , 2005 .

[27]  Hermann Kopetz,et al.  Should Responsive Systems be Event-Triggered or Time-Triggered ? , 1993 .

[28]  H. Sira-Ramírez A geometric approach to pulse-width modulated control in nonlinear dynamical systems , 1989 .

[29]  Karl Johan Åström On the Choice of Sampling Rates in Optimal Linear Systems , 1963 .

[30]  Elbert Hendricks,et al.  Conventional Event Based Engine Control , 1994 .

[31]  H. Wilson Spikes, Decisions, and Actions: The Dynamical Foundations of Neuroscience , 1999 .

[32]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .

[33]  A. Isidori Nonlinear Control Systems , 1985 .

[34]  Eliahu Ibrahim Jury,et al.  Sampled-data control systems , 1977 .

[35]  Lino Guzzella,et al.  Past, present and future of automotive control , 2006 .

[36]  G. Temes Delta-sigma data converters , 1994 .

[37]  K. D. Tocher,et al.  Sampled‐Data Control Systems , 1959 .

[38]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[39]  Karl Johan Åström,et al.  Log-concave Observers , 2006 .

[40]  Karl Johan Åström,et al.  Oscillations in Systems with Relay Feedback , 1993 .

[41]  Karl Johan Åström,et al.  A simple neuron servo , 1991, IEEE Trans. Neural Networks.

[42]  V. I. Utkin,et al.  Discontinuous Control Systems: State of Art in Theory and Applications , 1987 .

[43]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[44]  Irmgard Flügge-Lotz Discontinuous and optimal control , 1968 .

[45]  Bernard Friedland Modelling linear systems for pulsewidth-modulated control , 1976 .

[46]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[47]  S. J. Dodds,et al.  Adaptive, high precision, satellite attitude control for microprocessor implementation , 1981, Autom..