Impact analysis of the transponder time delay on radio-tracking observables

Abstract Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i . e . the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.

[1]  David E. Smith,et al.  Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission , 2013, Science.

[2]  Luciano Iess,et al.  Advanced radio science instrumentation for the mission BepiColombo to Mercury , 2001 .

[3]  C. Le Poncin-Lafitte,et al.  Relativistic formulation of coordinate light time, Doppler and astrometric observables up to the second post-Minkowskian order , 2014, 1401.7622.

[4]  R Jastrow,et al.  Satellite Orbits. , 1961, Science.

[5]  C. Le Poncin-Lafitte,et al.  General post-Minkowskian expansion of time transfer functions , 2008, 0803.0277.

[6]  S. Bertone,et al.  Light propagation in the field of a moving axisymmetric body: Theory and applications to the Juno mission , 2014, 1406.6600.

[7]  Luciano Iess,et al.  Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques , 2014 .

[8]  P. Teyssandier,et al.  New method for determining the light travel time in static, spherically symmetric spacetimes. Calculation of the terms of order G3 , 2013, 1304.3683.

[9]  John J. Degnan,et al.  Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer , 2013 .

[10]  L. Iess,et al.  Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization , 2017 .

[11]  Steve Matousek,et al.  The Juno New Frontiers mission , 2005 .

[12]  Jordan Ellis,et al.  Anomalous orbital-energy changes observed during spacecraft flybys of earth. , 2008, Physical review letters.

[13]  G. Petit,et al.  IERS Conventions (2010) , 2010 .

[14]  D. Vokrouhlický,et al.  Gravity field and rotation state of Mercury from the BepiColombo Radio Science Experiments , 2001 .

[15]  W. Folkner,et al.  Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft , 2014, 1402.6950.

[16]  David E. Smith,et al.  The Radio Frequency Subsystem and Radio Science on the MESSENGER Mission , 2007 .

[17]  David E. Smith,et al.  GRGM900C: A degree 900 lunar gravity model from GRAIL primary and extended mission data , 2014, Geophysical research letters.

[19]  O. Minazzoli,et al.  Time transfer functions as a way to validate light propagation solutions for space astrometry , 2013, 1306.2367.

[20]  G. Balmino,et al.  Venus gravity and topography: 60th degree and order model , 1993 .

[21]  N. Bachman,et al.  SPICE: A Means for Determining Observation Geometry , 2011 .

[22]  A. Milani,et al.  The BepiColombo MORE gravimetry and rotation experiments with the orbit14 software , 2016 .

[23]  P. Kuchynka,et al.  The Planetary and Lunar Ephemerides DE430 and DE431 , 2014 .

[24]  K. Nordtvedt The fourth test of general relativity , 1982 .

[25]  A. Fienga,et al.  INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.