Causal Graph Dynamics

[1]  Carlos Gershenson,et al.  Information and Computation , 2013, Handbook of Human Computation.

[2]  Vincent Nesme,et al.  A simple block representation of reversible cellular automata with time-symmetry , 2012, ArXiv.

[3]  Jack H. Lutz,et al.  Multi-Resolution Cellular Automata for Real Computation , 2011, CiE.

[4]  Eric Thierry,et al.  Applying Causality Principles to the Axiomatization of Probabilistic Cellular Automata , 2011, CiE.

[5]  Vincent Nesme,et al.  Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..

[6]  David Phillips,et al.  A Graph-Based Developmental Swarm Representation and Algorithm , 2010, ANTS Conference.

[7]  Gilles Dowek,et al.  On the completeness of quantum computation models , 2010, CiE.

[8]  D. Meyer,et al.  Lattice gas simulations of dynamical geometry in two dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Michel Coornaert,et al.  Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.

[10]  Satoshi Murata,et al.  Graph-Rewriting Automata as a Natural Extension of Cellular Automata , 2009 .

[11]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[12]  Céline Robardet,et al.  Description and simulation of dynamic mobility networks , 2008, Comput. Networks.

[13]  Jean-Louis Giavitto,et al.  Topological rewriting and the geometrization of programming , 2008 .

[14]  Vincent Nesme,et al.  One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations , 2007, LATA.

[15]  Bilel Derbel,et al.  Mobile Agents For Implementing Local Computations in Graphs , 2008 .

[16]  A. Barrat,et al.  Consensus formation on adaptive networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  F. Jordán,et al.  Graph Transformations and Game Theory: A Generative Mechanism for Network Formation , 2008 .

[18]  Wilfried Sieg,et al.  Church Without Dogma: Axioms for Computability , 2008 .

[19]  Satoshi Murata,et al.  Asynchronous Graph-Rewriting Automata and Simulation of Synchronous Execution , 2007, ECAL.

[20]  Hiroki Sayama,et al.  Generative Network Automata: A Generalized Framework for Modeling Complex Dynamical Systems with Autonomously Varying Topologies , 2007, 2007 IEEE Symposium on Artificial Life.

[21]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation , 2006, Monographs in Theoretical Computer Science. An EATCS Series.

[22]  L. Smolin,et al.  Quantum Graphity , 2006, hep-th/0611197.

[23]  Hans-Jörg Kreowski,et al.  Autonomous Units and Their Semantics - The Parallel Case , 2006, WADT.

[24]  Satoshi Murata,et al.  Self-description for Construction and Execution in Graph Rewriting Automata , 2005, ECAL.

[25]  J. Kari Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.

[26]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[27]  Ole Kniemeyer,et al.  Relational Growth Grammars - A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure , 2004, UPP.

[28]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[29]  Maurice Margenstern,et al.  A universal cellular automaton in the hyperbolic plane , 2003, Theor. Comput. Sci..

[30]  James D. Murray,et al.  Spatial models and biomedical applications , 2003 .

[31]  K. Tomita,et al.  Graph automata: natural expression of self-reproduction , 2002 .

[32]  Eric Rémila,et al.  Hyperbolic Recognition by Graph Automata , 2002, ICALP.

[33]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[34]  Jérôme Olivier Durand-Lose,et al.  Representing Reversible Cellular Automata with Reversible Block Cellular Automata , 2001, DM-CCG.

[35]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[36]  Gabriele Taentzer,et al.  Parallel High-Level Replacement Systems , 1997, Theor. Comput. Sci..

[37]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[38]  Miklos Santha,et al.  A decision procedure for unitary linear quantum cellular automata , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[39]  Gabriele Taentzer,et al.  Parallel and distributed graph transformation - formal description and application to communication-based systems , 1996, Berichte aus der Informatik.

[40]  Zsuzsanna Róka Simulations between Cellular Automata on Cayley Graphs , 1999, Theor. Comput. Sci..

[41]  Hartmut Ehrig,et al.  Parallel and Distributed Derivations in the Single-Pushout Approach , 1993, Theor. Comput. Sci..

[42]  Michael Löwe,et al.  Algebraic Approach to Single-Pushout Graph Transformation , 1993, Theor. Comput. Sci..

[43]  Hartmut Ehrig,et al.  Fundamentals of Algebraic Graph Transformation (Monographs in Theoretical Computer Science. An EATCS Series) , 1992 .

[44]  Annegret Habel,et al.  Amalgamation of Graph Transformations: A Synchronization Mechanism , 1987, J. Comput. Syst. Sci..

[45]  Arnold Schönhage,et al.  Storage Modification Machines , 1979, SIAM J. Comput..

[46]  R. Sorkin Time-evolution problem in regge calculus , 1975 .

[47]  V. A. Uspenski,et al.  On the Definition of an Algorithm , 1963 .