Free energy analysis of vesicle-to-bicelle transformation

A lipid assembly composed of a finite number of lipid molecules can have multiple metastable structures. Using a series of coarse-grained molecular dynamics simulations, we evaluate the free energy profile for the transformation of a small vesicle to a disk-like structure called a bicelle. This free energy is found to be lower than that predicted from continuum elastic theory. For small unilamellar vesicles, the relaxation of the internal structure of the membrane is suggested to play an important role in lowering the free energy barrier for the vesicle-to-bicelle transformation.

[1]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[2]  Siewert J Marrink,et al.  Molecular dynamics simulations of hydrophilic pores in lipid bilayers. , 2004, Biophysical journal.

[3]  Masuhiro Mikami,et al.  Rigid‐body dynamics in the isothermal‐isobaric ensemble: A test on the accuracy and computational efficiency , 2003, J. Comput. Chem..

[4]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[5]  G. Peters,et al.  Methodological problems in pressure profile calculations for lipid bilayers. , 2005, The Journal of chemical physics.

[6]  D. Marsh,et al.  Elastic curvature constants of lipid monolayers and bilayers. , 2006, Chemistry and physics of lipids.

[7]  Wataru Shinoda,et al.  Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. , 2010, The journal of physical chemistry. B.

[8]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[9]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[10]  C. Brooks Computer simulation of liquids , 1989 .

[11]  P. Moore,et al.  A mean field approach for computing solid-liquid surface tension for nanoscale interfaces. , 2010, The Journal of chemical physics.

[12]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[13]  Y. Bouret,et al.  Molecular dynamics simulations of the lipid bilayer edge. , 2004, Biophysical journal.

[14]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[15]  W. Briels,et al.  Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. , 2006, The Journal of chemical physics.

[16]  T. Ikeshoji,et al.  Microscopic pressure tensor for hard-sphere fluids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Olivier Sandre,et al.  Cascades of transient pores in giant vesicles: line tension and transport. , 2003, Biophysical journal.

[18]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[19]  P. Fromherz,et al.  From discoid micelles to spherical vesicles. The concept of edge activity , 1986 .

[20]  Wataru Shinoda,et al.  Coarse-grained potential models for phenyl-based molecules: I. Parametrization using experimental data. , 2010, The journal of physical chemistry. B.

[21]  C Sauterey,et al.  Osmotic pressure induced pores in phospholipid vesicles. , 1975, Biochemistry.

[22]  Wataru Shinoda,et al.  A Transferable Coarse Grain Non-bonded Interaction Model For Amino Acids. , 2009, Journal of chemical theory and computation.

[23]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[24]  D. Zhelev,et al.  Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. , 1993, Biochimica et biophysica acta.

[25]  A. Gliozzi,et al.  Electroporation in symmetric and asymmetric membranes. , 1993, Biochimica et biophysica acta.

[26]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[27]  Grace Brannigan,et al.  A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. , 2006, Biophysical journal.

[28]  Wataru Shinoda,et al.  Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. , 2010, The journal of physical chemistry. B.

[29]  Wataru Shinoda,et al.  Coarse-grained molecular modeling of non-ionic surfactant self-assembly , 2008 .

[30]  M. Kozlov,et al.  The shape of lipid molecules and monolayer membrane fusion , 1985 .

[31]  T. V. Tolpekina,et al.  Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations. , 2004, The Journal of chemical physics.

[32]  Pore nucleation in mechanically stretched bilayer membranes. , 2005, The Journal of chemical physics.

[33]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[34]  John F. Nagle,et al.  Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains , 2006, The Journal of Membrane Biology.

[35]  P. Fromherz Lipid-vesicle structure: Size control by edge-active agents , 1983 .

[36]  T. V. Tolpekina,et al.  Simulations of stable pores in membranes: system size dependence and line tension. , 2004, The Journal of chemical physics.