Schottky algorithms: Classical meets tropical

We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky-Igusa modular form.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  Riccardo Salvati Manni,et al.  Plane quartics: the universal matrix of bitangents , 2017, Israel Journal of Mathematics.

[3]  Ron Donagi The schottky problem , 1988 .

[4]  Achill Schürmann,et al.  The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices. , 2015, Acta crystallographica. Section A, Foundations and advances.

[5]  Bernd Sturmfels,et al.  Quartic spectrahedra , 2013, Math. Program..

[6]  Bernard Deconinck,et al.  Computing Riemann theta functions , 2002, Math. Comput..

[7]  Bernard Deconinck,et al.  Computing Riemann matrices of algebraic curves , 2001 .

[8]  Grigory Mikhalkin,et al.  Tropical curves, their Jacobians and Theta functions , 2006 .

[9]  Melody Chan,et al.  Combinatorics of the tropical Torelli map , 2010, 1012.4539.

[10]  Josephine Yu,et al.  Linear systems on tropical curves , 2009, 0909.3685.

[11]  W. T. Tutte An algorithm for determining whether a given binary matroid is graphic. , 1960 .

[12]  Michael Joswig,et al.  polymake: a Framework for Analyzing Convex Polytopes , 2000 .

[13]  Bernard Deconinck,et al.  Computing Riemann theta functions in Sage with applications , 2016, Math. Comput. Simul..

[14]  Jonathan D. Hauenstein,et al.  What is numerical algebraic geometry , 2017 .

[15]  Samuel Grushevsky,et al.  Explicit formulas for infinitely many Shimura curves in genus 4 , 2015 .

[16]  G. Kempf,et al.  The equations defining a curve of genus 4 , 1986 .

[17]  Lynn Chua,et al.  From Curves to Tropical Jacobians and Back , 2017, 1701.03194.

[18]  Margarida Melo,et al.  On the tropical Torelli map , 2009, 0907.3324.

[19]  Bernd Sturmfels,et al.  The Universal Kummer Threefold , 2013, Exp. Math..

[20]  J. Igusa On the irreducibility of Schottky's divisor , 1982 .

[21]  Bo Lin Computing linear systems on metric graphs , 2018, J. Symb. Comput..