Estimation and Inference in Factor Copula Models with Exogenous Covariates

A factor copula model is proposed in which factors are either simulable or estimable from exogenous information. Point estimation and inference are based on a simulated methods of moments (SMM) approach with non-overlapping simulation draws. Consistency and limiting normality of the estimator is established and the validity of bootstrap standard errors is shown. Doing so, previous results from the literature are verified under low-level conditions imposed on the individual components of the factor structure. Monte Carlo evidence confirms the accuracy of the asymptotic theory in finite samples and an empirical application illustrates the usefulness of the model to explain the cross-sectional dependence between stock returns.

[1]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[2]  D. Pollard,et al.  An introduction to functional central limit theorems for dependent stochastic processes , 1994 .

[3]  Xiaohong Chen,et al.  Efficient Estimation of Multivariate Semi-nonparametric GARCH Filtered Copula Models , 2019, Journal of Econometrics.

[4]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[5]  Holger Dette,et al.  Goodness‐of‐Fit Tests for Multiplicative Models with Dependent Data , 2009 .

[6]  Dominik Wied,et al.  A monitoring procedure for detecting structural breaks in factor copula models , 2020 .

[7]  Dominik Wied,et al.  Testing for structural breaks in factor copula models , 2019, Journal of Econometrics.

[8]  Jean Boivin,et al.  Sticky Prices and Monetary Policy: Evidence from Disaggregated U.S. Data , 2007 .

[9]  Ruey S. Tsay,et al.  High Dimensional Dynamic Stochastic Copula Models , 2014 .

[10]  S. Resnick A Probability Path , 1999 .

[11]  B. Rémillard Goodness-of-Fit Tests for Copulas of Multivariate Time Series , 2010 .

[12]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[13]  E. Giné,et al.  Bootstrapping General Empirical Measures , 1990 .

[14]  Lijian Yang,et al.  SPLINE ESTIMATION OF A SEMIPARAMETRIC GARCH MODEL , 2016, Econometric Theory.

[15]  Another look at the disjoint blocks bootstrap , 2009 .

[16]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[17]  Stanislav Volgushev,et al.  Empirical and sequential empirical copula processes under serial dependence , 2011, J. Multivar. Anal..

[18]  J. Zakoian,et al.  Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes , 2004 .

[19]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[20]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[21]  BLP Estimation Using Laplace Transformation and Overlapping Simulation Draws , 2019 .

[22]  Pavel Krupskii,et al.  Factor copula models for multivariate data , 2013, J. Multivar. Anal..

[23]  H. White Asymptotic theory for econometricians , 1985 .

[24]  Weighted Minimum Mean–Square Distance from Independence Estimation , 2002 .

[25]  Andrew J. Patton,et al.  Copulas in Econometrics , 2014 .

[26]  Guang Cheng,et al.  A Note on Bootstrap Moment Consistency for Semiparametric M-Estimation , 2011 .

[27]  Dong Hwan Oh,et al.  Modeling Dependence in High Dimensions With Factor Copulas , 2015 .

[28]  D. Baur,et al.  Institute for International Integration Studies Is Gold a Safe Haven? International Evidence Is Gold a Safe Haven? International Evidence Is Gold a Safe Haven? International Evidence , 2022 .

[29]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[30]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[31]  Andrew J. Patton,et al.  Bootstrapping Two-Stage Quasi-Maximum Likelihood Estimators of Time Series Models , 2022, Journal of Business & Economic Statistics.

[32]  Stanislav Volgushev,et al.  Weak convergence of the empirical copula process with respect to weighted metrics , 2014, 1411.5888.

[33]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[34]  Andrew J. Patton,et al.  Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads , 2013 .

[35]  Marek Omelka,et al.  A copula approach for dependence modeling in multivariate nonparametric time series , 2019, J. Multivar. Anal..

[36]  D. Pollard,et al.  Simulation and the Asymptotics of Optimization Estimators , 1989 .

[37]  H. Joe,et al.  Flexible copula models with dynamic dependence and application to financial data , 2020 .

[38]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[39]  Dynamic Factor Copula Models with Estimated Cluster Assignments , 2020 .

[40]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[41]  Lijian Yang,et al.  A semiparametric GARCH model for foreign exchange volatility , 2006 .

[42]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[43]  M. Omelka,et al.  Maximum pseudo‐likelihood estimation based on estimated residuals in copula semiparametric models , 2019, Scandinavian Journal of Statistics.

[44]  G. Caporale,et al.  The BDS Test as a Test for the Adequacy of a GARCH(1,1) Specification. A Monte Carlo Study , 2005 .

[45]  B. Rémillard,et al.  Rank-Based Extensions of the Brock, Dechert, and Scheinkman Test , 2007 .

[46]  M. Kosorok Introduction to Empirical Processes and Semiparametric Inference , 2008 .

[47]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[48]  M. Akritas,et al.  Non‐parametric Estimation of the Residual Distribution , 2001 .

[49]  Jean Boivin,et al.  Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach , 2003 .

[50]  V. Chernozhukov,et al.  An MCMC Approach to Classical Estimation , 2002, 2301.07782.

[51]  Lung-fei Lee On Efficiency of Methods of Simulated Moments and Maximum Simulated Likelihood Estimation of Discrete Response Models , 1992, Econometric Theory.

[52]  Dong Hwan Oh,et al.  Simulated Method of Moments Estimation for Copula-Based Multivariate Models , 2013 .

[53]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[54]  A. Opschoor,et al.  Closed-Form Multi-Factor Copula Models With Observation-Driven Dynamic Factor Loadings , 2019, Journal of Business & Economic Statistics.

[55]  M. Wegkamp,et al.  Weak convergence of empirical copula processes indexed by functions , 2014, 1410.4150.

[56]  Marek Omelka,et al.  Rank-based inference tools for copula regression, with property and casualty insurance applications , 2019, Insurance: Mathematics and Economics.

[57]  Johan Segers,et al.  Extreme value copula estimation based on block maxima of a multivariate stationary time series , 2013, 1311.3060.