Time Blocks Decomposition of Multistage Stochastic Optimization Problems

Multistage stochastic optimization problems are, by essence, complex as their solutions are indexed both by stages and by uncertainties. Their large scale nature makes decomposition methods appealing, like dynamic programming which is a sequential decomposition using a state variable defined at all stages. In this paper, we introduce the notion of state reduction by time blocks, that is, at stages that are not necessarily all the original stages. Then, we prove a reduced dynamic programming equation. We position our result with respect to the most well-known mathematical frameworks for dynamic programming. We illustrate our contribution by showing its potential for applied problems with two time scales.

[1]  Alexandre Street,et al.  Assessing the cost of the Hazard-Decision simplification in multistage stochastic hydrothermal scheduling , 2020 .

[2]  S. Yüksel,et al.  A Universal Dynamic Program and Refined Existence Results for Decentralized Stochastic Control , 2020, SIAM J. Control. Optim..

[3]  Alexander Shapiro,et al.  Periodical Multistage Stochastic Programs , 2020, SIAM J. Optim..

[4]  P. Carpentier,et al.  Mixed Spatial and Temporal Decompositions for Large-Scale Multistage Stochastic Optimization Problems , 2019, Journal of Optimization Theory and Applications.

[5]  Aditya Mahajan,et al.  Approximate information state for partially observed systems , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[6]  Georg Ch. Pflug,et al.  Multiscale stochastic optimization: modeling aspects and scenario generation , 2019, Comput. Optim. Appl..

[7]  Tristan Rigaut,et al.  Time decomposition methods for optimal management of energy storage under stochasticity , 2019 .

[8]  Fernando Paganini,et al.  Towards multi-timescale energy provisioning using Stochastic Dual Dynamic Programming , 2018, 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM).

[9]  P. Carpentier,et al.  Time Blocks Decomposition of Multistage Stochastic Optimization Problems , 2018 .

[10]  Warren B. Powell,et al.  Co-Optimizing Battery Storage for the Frequency Regulation and Energy Arbitrage Using Multi-Scale Dynamic Programming , 2018, IEEE Transactions on Smart Grid.

[11]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[12]  Kengy Barty,et al.  Decomposition of large-scale stochastic optimal control problems , 2009, RAIRO Oper. Res..

[13]  Daniel Kuhn,et al.  Aggregation and discretization in multistage stochastic programming , 2008, Math. Program..

[14]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[15]  L. Sucar,et al.  Markov Decision Processes , 2004, Encyclopedia of Machine Learning and Data Mining.

[16]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[17]  S. E. Wright,et al.  Primal-Dual Aggregation and Disaggregation for Stochastic Linear Programs , 1994, Math. Oper. Res..

[18]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[19]  Hans S. Witsenhausen,et al.  Equivalent stochastic control problems , 1988, Math. Control. Signals Syst..

[20]  John R. Birge,et al.  Aggregation bounds in stochastic linear programming , 1985, Math. Program..

[21]  R. Hartley,et al.  Optimisation Over Time: Dynamic Programming and Stochastic Control: , 1983 .

[22]  L. C. Thomas,et al.  Optimization over Time. Dynamic Programming and Stochastic Control. Volume 1 , 1983 .

[23]  I. V. Evstigneev,et al.  Measurable Selection and Dynamic Programming , 1976, Math. Oper. Res..

[24]  Hans S. Witsenhausen,et al.  On Policy Independence of Conditional Expectations , 1975, Inf. Control..

[25]  Hans S. Witsenhausen,et al.  A standard form for sequential stochastic control , 1973, Mathematical systems theory.

[26]  Abubakr Gafar Abdalla,et al.  Probability Theory , 2017, Encyclopedia of GIS.

[27]  Jean-Philippe Chancelier,et al.  Stochastic Multi-Stage Optimization , 2015 .

[28]  Michal Kaut,et al.  Multi-horizon stochastic programming , 2014, Comput. Manag. Sci..

[29]  Boris S. Mordukhovich,et al.  Journal of Convex Analysis , 2012 .

[30]  P. Schrimpf,et al.  Dynamic Programming , 2011 .

[31]  T. Ralphs,et al.  Decomposition Methods , 2010 .

[32]  Hans S. Witsenhausen,et al.  The Intrinsic Model for Discrete Stochastic Control: Some Open Problems , 1975 .