Why Gaussian quadrature in the complex plane?
暂无分享,去创建一个
[1] Claude Brezinski,et al. Pade-Type Approximation and General Orthogonal Polynomials , 1981, The Mathematical Gazette.
[2] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[3] K. Paulsen,et al. A scalar and vector potential formulation for finite element solutions to Maxwell's equations , 1992, IEEE Antennas and Propagation Society International Symposium 1992 Digest.
[4] C. Brezinski. Biorthogonality and its Applications to Numerical Analysis , 1991 .
[5] W. Chew. Waves and Fields in Inhomogeneous Media , 1990 .
[6] Gene H. Golub,et al. An adaptive Chebyshev iterative method\newline for nonsymmetric linear systems based on modified moments , 1994 .
[7] W. Gautschi. Numerical analysis: an introduction , 1997 .
[8] D. Arnett,et al. Supernovae and Nucleosynthesis , 1996 .
[9] T. Manteuffel,et al. Conjugate gradient algorithms using multiple recursions , 1996 .
[10] Michael B. Giles,et al. Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..
[11] Jirí Hrebícek,et al. Solving Problems in Scientific Computing Using Maple and MATLAB® , 2004, Springer Berlin Heidelberg.
[12] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[13] Tobin A. Driscoll,et al. From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..
[14] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[15] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[16] F. Low. Classical Field Theory , 1997 .
[17] R. W. Freund,et al. Gauss Quadratures Associated with the Arnoldi Process and the Lanczos Algorithm , 1993 .
[18] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[19] Keith D. Paulsen,et al. Nodal-based finite-element modeling of Maxwell's equations , 1992 .
[20] H. Wilf. Mathematics for the Physical Sciences , 1976 .
[21] George W. Kattawar,et al. Scattering theory of waves and particles (2nd ed.) , 1983 .
[22] R. Gordon. Error Bounds in Spectroscopy and Nonequilibrium Statistical Mechanics , 1968 .
[23] K D Paulsen,et al. Finite-element solution of Maxwell's equations with Helmholtz forms. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.
[24] O. Axelsson. Iterative solution methods , 1995 .
[25] Michael T. Heath,et al. Scientific Computing: An Introductory Survey , 1996 .
[26] N. Dallaporta. L. D. Landau undE. M. Lifshitz -Quantum Mechanics. Non relativistic Theory , 1958 .
[27] Åke Björck,et al. Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.
[28] W. Gragg. Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle , 1993 .
[29] G. Golub,et al. On the Error Computation for Polynomial Based Iteration Methods , 1994 .
[30] W. Gautschi. Orthogonal polynomials: applications and computation , 1996, Acta Numerica.
[31] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[32] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[33] R. Newton. Scattering theory of waves and particles , 1966 .
[34] Roy G. Gordon,et al. Error Bounds in Equilibrium Statistical Mechanics , 1968 .
[35] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[36] F. Low,et al. Classical Field Theory: Electromagnetism and Gravitation , 1997 .
[37] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[38] H. Shapiro. The Schwarz Function and Its Generalization to Higher Dimensions , 1992 .
[39] E. Stiefel. Kernel polynomial in linear algebra and their numerical applications, in : Further contributions to the determination of eigenvalues , 1958 .
[40] K.D. Paulsen,et al. Applications of Potentials to Finite Element Modeling of Maxwell's Equations , 1992, Digest of the Fifth Biennial IEEE Conference on Electromagnetic Field Computation.
[41] G. Golub,et al. Bounds for the error of linear systems of equations using the theory of moments , 1972 .
[42] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[43] D. Smolarski. Optimum semi-iterative methods for the solution of any linear algebraic system with a square matrix , 1982 .
[44] G. Golub,et al. Bounds for the error in linear systems , 1979 .
[45] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[46] Gene H. Golub,et al. Matrix computations , 1983 .
[47] R. W. Freund,et al. The Look-Ahead Lanczos Process for Large Nonsymmetric Matrices and Related Algorithms , 1993 .