Many-body perturbation theory with a restricted open-shell Hartree—Fock reference

Abstract A new, efficient ROHF based MBPT method is presented. The method, which is non-iterative, invariant to transformations among occupied or virtual orbitals, and generalizable to any order, is illustrated by application to the UHF spin contaminated CN radical and the H+OCH 2 transition state.

[1]  H. Schlegel,et al.  Moeller-Plesset perturbation theory with spin projection , 1988 .

[2]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[3]  Rodney J. Bartlett,et al.  Molecular Applications of Coupled Cluster and Many-Body Perturbation Methods , 1980 .

[4]  John F. Stanton,et al.  Analytic energy gradients for open-shell coupled-cluster singles and doubles (CCSD) calculations using restricted open-shell Hartree—Fock (ROHF) reference functions , 1991 .

[5]  N. Handy,et al.  Convergence of projected unrestricted Hartee-Fock Moeller-Plesset series. , 1988 .

[6]  Nicholas C. Handy,et al.  Size-consistent Brueckner theory limited to double substitutions , 1989 .

[7]  R. Bartlett,et al.  Property evaluation and orbital relaxation in coupled cluster methods , 1987 .

[8]  R. Bartlett,et al.  A coupled cluster approach with triple excitations , 1984 .

[9]  G. D. Purvis,et al.  Comparison of MBPT and coupled-cluster methods with full CI. Importance of triplet excitation and infinite summations☆ , 1983 .

[10]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[11]  Rodney J. Bartlett,et al.  An open-shell spin-restricted coupled cluster method: application to ionization potentials in nitrogen , 1988 .

[12]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[13]  Ivan Hubač,et al.  Correlation energy of open-shell systems. Application of the many-body Rayleigh-Schrödinger perturbation theory in the restricted Roothaan-Hartree-Fock formalism , 1980 .

[14]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[15]  N. Handy,et al.  Projected unrestricted Mo/ller–Plesset second‐order energies and gradients , 1990 .

[16]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[17]  J. Pople,et al.  Effect of electron correlation of theoretical equilibrium geometries. 2. Comparison of third-order perturbation and configuration interaction results with experiment , 1982 .

[18]  Peter J. Knowles,et al.  Projected unrestricted Mo/ller–Plesset second‐order energies , 1988 .

[19]  A. Henglein,et al.  Sonolysis of polymers in aqueous solution. New observations on pyrolysis and mechanical degradation , 1988 .

[20]  R. Bartlett,et al.  Theoretical study of PO and PO− , 1988 .

[21]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[22]  L. Radom,et al.  Slow convergence of the møller-plesset perturbation series: the dissociation energy of hydrogen cyanide and the electron affinity of the cyano radical , 1987 .

[23]  Isaiah Shavitt,et al.  Comparison of high-order many-body perturbation theory and configuration interaction for H2O , 1977 .

[24]  H. Schlegel,et al.  Analytical gradients for unrestricted Hartree–Fock and second order Mo/ller–Plesset perturbation theory with single spin annihilation , 1989 .

[25]  Rodney J. Bartlett,et al.  Many‐body perturbation theory, coupled‐pair many‐electron theory, and the importance of quadruple excitations for the correlation problem , 1978 .

[26]  R. Bartlett,et al.  Multiplicity of many-body wavefunctions using unrestricted Hartree-Fock reference functions , 1988 .

[27]  R. Bartlett Coupled-cluster approach to molecular structure and spectra: a step toward predictive quantum chemistry , 1989 .

[28]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[29]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .