Neural Mechanisms for Drosophila Contrast Vision
暂无分享,去创建一个
A. Borst | A. Bahl | Étienne Serbe | M. Meier | Georg Ammer
[1] Yvette E. Fisher,et al. Orientation Selectivity Sharpens Motion Detection in Drosophila , 2015, Neuron.
[2] A. Borst,et al. Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector , 2015, Current Biology.
[3] Alexander Borst,et al. Neural Circuit to Integrate Opposing Motions in the Visual Field , 2015, Cell.
[4] Aljoscha Nern,et al. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.
[5] Damon A. Clark,et al. Processing properties of ON and OFF pathways for Drosophila motion detection , 2014, Nature.
[6] Ian A. Meinertzhagen,et al. Candidate Neural Substrates for Off-Edge Motion Detection in Drosophila , 2014, Current Biology.
[7] Michael B. Reiser,et al. Direct Observation of ON and OFF Pathways in the Drosophila Visual System , 2014, Current Biology.
[8] A. Borst,et al. Neural Circuit Components of the Drosophila OFF Motion Vision Pathway , 2014, Current Biology.
[9] Alexander Borst,et al. Optogenetic Control of Fly Optomotor Responses , 2013, The Journal of Neuroscience.
[10] Louis K. Scheffer,et al. A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.
[11] G. Rubin,et al. A directional tuning map of Drosophila elementary motion detectors , 2013, Nature.
[12] Damon A. Clark,et al. Modular Use of Peripheral Input Channels Tunes Motion-Detecting Circuitry , 2013, Neuron.
[13] Michael B. Reiser,et al. Contributions of the 12 Neuron Classes in the Fly Lamina to Motion Vision , 2013, Neuron.
[14] Alexander Borst,et al. Object tracking in motion-blind flies , 2013, Nature Neuroscience.
[15] Alexander Borst,et al. Functional Specialization of Parallel Motion Detection Circuits in the Fly , 2013, The Journal of Neuroscience.
[16] Gerald M Rubin,et al. Using translational enhancers to increase transgene expression in Drosophila , 2012, Proceedings of the National Academy of Sciences.
[17] A. Borst,et al. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila , 2012, Journal of Comparative Physiology.
[18] A. Borst,et al. Internal Structure of the Fly Elementary Motion Detector , 2011, Neuron.
[19] Damon A. Clark,et al. Defining the Computational Structure of the Motion Detector in Drosophila , 2011, Neuron.
[20] Michael B. Reiser,et al. Neural correlates of illusory motion perception in Drosophila , 2011, Proceedings of the National Academy of Sciences.
[21] Alexander Borst,et al. ON and OFF pathways in Drosophila motion vision , 2010, Nature.
[22] Jai Y. Yu,et al. Cellular Organization of the Neural Circuit that Drives Drosophila Courtship Behavior , 2010, Current Biology.
[23] B Schnell,et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.
[24] Claude Desplan,et al. The Color-Vision Circuit in the Medulla of Drosophila , 2008, Current Biology.
[25] A. Borst,et al. Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.
[26] Kai Hamburger,et al. Grouping by Contrast: Figure – Ground Segregation is Not Necessarily Fundamental , 2007 .
[27] Kai Hamburger,et al. Last but not least. , 2007, Perception.
[28] Arthur G Shapiro,et al. Visual illusions based on single-field contrast asynchronies. , 2005, Journal of vision.
[29] A. Borst,et al. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.
[30] Arthur G Shapiro,et al. Induced contrast asynchronies. , 2004, Journal of vision.
[31] K. Fischbach,et al. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.
[32] Martin Egelhaaf,et al. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.
[33] Karl Geokg Götz,et al. Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.
[34] K. Fischbach,et al. The optic lobe of Drosophila melanogaster , 2004, Cell and Tissue Research.
[35] A. Borst,et al. Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.
[36] A Borst,et al. Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.
[37] T. Kitamoto. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.
[38] P Sinha,et al. Last but Not Least , 2000, Perception.
[39] E. Adelson. Lightness Perception and Lightness Illusions , 1999 .
[40] N. Perrimon,et al. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.
[41] H. Bülthoff,et al. Analogous motion illusion in man and fly , 1979, Nature.
[42] Bernward Pick,et al. Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .
[43] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .