Vertex Lie algebras, vertex Poisson algebras and vertex algebras
暂无分享,去创建一个
[1] W. G. Ritter. Geometric Quantization , 2002, math-ph/0208008.
[2] Haisheng Li,et al. Generalized Vertex Algebras Generated by Parafermion-Like Vertex Operators , 2000, math/0006104.
[3] A. Matsuo,et al. Axioms for a vertex algebra and the locality of quantum fields , 1997, hep-th/9706118.
[4] R. Kedem,et al. COMBINATORICS OF THE ŝl 2 SPACES OF COINVARIANTS , 1999 .
[5] M. Roitman. On Free Conformal and Vertex Algebras , 1998, math/9809050.
[6] Haisheng Li,et al. Certain Generating Subspaces for Vertex Operator Algebras , 1998, math/9807111.
[7] A. Meurman,et al. Annihilating fields of standard modules of sl(2, C)~ and combinatorial identies , 1998, math/9806105.
[8] V. Kac. Vertex algebras for beginners , 1997 .
[9] Paul Montague,et al. The radical of a vertex operator algebra , 1996, q-alg/9608022.
[10] E. Frenkel,et al. Geometric interpretation of the Poisson structure in affine Toda field theories , 1996, q-alg/9606023.
[11] C. Lam. On The Structure of Vertex Operator Algebras and Their Weight Two Subspaces , 1996 .
[12] Yongchang Zhu,et al. Modular invariance of characters of vertex operator algebras , 1995 .
[13] Haisheng Li. Symmetric invariant bilinear forms on vertex operator algebras , 1994 .
[14] Haisheng Li. Representation theory and tensor product theory for vertex operator algebras , 1994, hep-th/9406211.
[15] Haisheng Li. Local systems of vertex operators, vertex superalgebras and modules , 1994, hep-th/9406185.
[16] James Lepowsky,et al. On Axiomatic Approaches to Vertex Operator Algebras and Modules , 1993 .
[17] B. Feigin,et al. Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities , 1993, hep-th/9301039.
[18] James Lepowsky,et al. Generalized vertex algebras and relative vertex operators , 1993 .
[19] I. Frenkel,et al. Vertex operator algebras associated to representations of affine and Virasoro Algebras , 1992 .
[20] Igor B. Frenkel,et al. Spinor Construction of Vertex Operator Algebras, Triality, and E , 1991 .
[21] B. Feigin,et al. Duality in W-algebras , 1991 .
[22] G. Moore,et al. Classical and quantum conformal field theory , 1989 .
[23] R. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[24] Alexander B. Zamolodchikov,et al. Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .
[25] B. Dubrovin,et al. Modern geometry--methods and applications , 1984 .
[26] B. Dubrovin,et al. Hamiltonian formalism of one-dimensional systems of hydrodynamic type , 1983 .
[27] I. Gel'fand,et al. Hamiltonian operators and algebraic structures related to them , 1979 .
[28] I. Stewart,et al. Infinite-dimensional Lie algebras , 1974 .