Vertex Lie algebras, vertex Poisson algebras and vertex algebras

The notions of vertex Lie algebra and vertex Poisson algebra are presented and connections among vertex Lie algebras, vertex Poisson algebras and vertex algebras are discussed.

[1]  W. G. Ritter Geometric Quantization , 2002, math-ph/0208008.

[2]  Haisheng Li,et al.  Generalized Vertex Algebras Generated by Parafermion-Like Vertex Operators , 2000, math/0006104.

[3]  A. Matsuo,et al.  Axioms for a vertex algebra and the locality of quantum fields , 1997, hep-th/9706118.

[4]  R. Kedem,et al.  COMBINATORICS OF THE ŝl 2 SPACES OF COINVARIANTS , 1999 .

[5]  M. Roitman On Free Conformal and Vertex Algebras , 1998, math/9809050.

[6]  Haisheng Li,et al.  Certain Generating Subspaces for Vertex Operator Algebras , 1998, math/9807111.

[7]  A. Meurman,et al.  Annihilating fields of standard modules of sl(2, C)~ and combinatorial identies , 1998, math/9806105.

[8]  V. Kac Vertex algebras for beginners , 1997 .

[9]  Paul Montague,et al.  The radical of a vertex operator algebra , 1996, q-alg/9608022.

[10]  E. Frenkel,et al.  Geometric interpretation of the Poisson structure in affine Toda field theories , 1996, q-alg/9606023.

[11]  C. Lam On The Structure of Vertex Operator Algebras and Their Weight Two Subspaces , 1996 .

[12]  Yongchang Zhu,et al.  Modular invariance of characters of vertex operator algebras , 1995 .

[13]  Haisheng Li Symmetric invariant bilinear forms on vertex operator algebras , 1994 .

[14]  Haisheng Li Representation theory and tensor product theory for vertex operator algebras , 1994, hep-th/9406211.

[15]  Haisheng Li Local systems of vertex operators, vertex superalgebras and modules , 1994, hep-th/9406185.

[16]  James Lepowsky,et al.  On Axiomatic Approaches to Vertex Operator Algebras and Modules , 1993 .

[17]  B. Feigin,et al.  Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition identities , 1993, hep-th/9301039.

[18]  James Lepowsky,et al.  Generalized vertex algebras and relative vertex operators , 1993 .

[19]  I. Frenkel,et al.  Vertex operator algebras associated to representations of affine and Virasoro Algebras , 1992 .

[20]  Igor B. Frenkel,et al.  Spinor Construction of Vertex Operator Algebras, Triality, and E , 1991 .

[21]  B. Feigin,et al.  Duality in W-algebras , 1991 .

[22]  G. Moore,et al.  Classical and quantum conformal field theory , 1989 .

[23]  R. Borcherds Vertex algebras, Kac-Moody algebras, and the Monster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Alexander B. Zamolodchikov,et al.  Infinite additional symmetries in two-dimensional conformal quantum field theory , 1985 .

[25]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[26]  B. Dubrovin,et al.  Hamiltonian formalism of one-dimensional systems of hydrodynamic type , 1983 .

[27]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .

[28]  I. Stewart,et al.  Infinite-dimensional Lie algebras , 1974 .