Enabling Wide Autonomous DVFS in a 22 nm Graphics Execution Core Using a Digitally Controlled Fully Integrated Voltage Regulator

A digitally-controlled fully integrated voltage regulator (IVR) enables wide autonomous DVFS in a 22 nm graphics execution core. Part of the original power header is converted into a hybrid power stage to support digital low-dropout (DLDO), and switched-capacitor voltage regulator (SCVR) modes, in addition to the original bypass and sleep modes. Using voltage sensing, tunable replica circuit, or a core warning signal, the IVR detects and quickly responds to fast voltage droops to support fast dynamic workload changes without performance degradation. In a prototype, a 3D graphics execution core is powered up by the proposed hybrid IVR demonstrating measured 26% and 82% reduction in core energy in the turbo and the near-threshold voltage (NTV) modes, respectively. The total area overhead of the proposed hybrid IVR is 4% of the core compared to 2% from the original power header. Our digitally assisted control for the droop response shows ~ 75% core frequency improvement at 0.84 V.

[1]  George Varghese,et al.  A 22nm IA multi-CPU and GPU System-on-Chip , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Jaydeep Kulkarni,et al.  A 0.45–1 V Fully-Integrated Distributed Switched Capacitor DC-DC Converter With High Density MIM Capacitor in 22 nm Tri-Gate CMOS , 2014, IEEE Journal of Solid-State Circuits.

[3]  Kazunori Watanabe,et al.  0.5-V input digital LDO with 98.7% current efficiency and 2.7-µA quiescent current in 65nm CMOS , 2010, IEEE Custom Integrated Circuits Conference 2010.

[4]  James Tschanz,et al.  A 32 nm Embedded, Fully-Digital, Phase-Locked Low Dropout Regulator for Fine Grained Power Management in Digital Circuits , 2014, IEEE Journal of Solid-State Circuits.

[5]  R. Harjani,et al.  A High-Efficiency DC–DC Converter Using 2 nH Integrated Inductors , 2008, IEEE Journal of Solid-State Circuits.

[6]  Paolo A. Aseron,et al.  A 45 nm Resilient Microprocessor Core for Dynamic Variation Tolerance , 2011, IEEE Journal of Solid-State Circuits.

[7]  S.R. Sanders,et al.  Analysis and Optimization of Switched-Capacitor DC–DC Converters , 2008, IEEE Transactions on Power Electronics.

[8]  James Tschanz,et al.  8.6 Enabling wide autonomous DVFS in a 22nm graphics execution core using a digitally controlled hybrid LDO/switched-capacitor VR with fast droop mitigation , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[9]  Keith A. Bowman,et al.  8.5 A 16nm auto-calibrating dynamically adaptive clock distribution for maximizing supply-voltage-droop tolerance across a wide operating range , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[10]  Fabrice Paillet,et al.  FIVR — Fully integrated voltage regulators on 4th generation Intel® Core™ SoCs , 2014, 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014.

[11]  Soraya Ghiasi,et al.  A Distributed Critical-Path Timing Monitor for a 65nm High-Performance Microprocessor , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[12]  Rajesh Kumar,et al.  Haswell: A Family of IA 22 nm Processors , 2015, IEEE Journal of Solid-State Circuits.

[13]  James Tschanz,et al.  Conductance Modulation Techniques in Switched-Capacitor DC-DC Converter for Maximum-Efficiency Tracking and Ripple Mitigation in 22 nm Tri-Gate CMOS , 2015, IEEE Journal of Solid-State Circuits.

[14]  Arijit Raychowdhury,et al.  5.6 A 0.13μm fully digital low-dropout regulator with adaptive control and reduced dynamic stability for ultra-wide dynamic range , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[15]  Joseph Shor,et al.  A Fully Integrated Multi-CPU, Processor Graphics, and Memory Controller 32-nm Processor , 2012, IEEE Journal of Solid-State Circuits.

[16]  Wilfred Gomes,et al.  5.9 Haswell: A family of IA 22nm processors , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[17]  Edgar Sánchez-Sinencio,et al.  Full On-Chip CMOS Low-Dropout Voltage Regulator , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  T. Karnik,et al.  Area-efficient linear regulator with ultra-fast load regulation , 2005, IEEE Journal of Solid-State Circuits.

[19]  Gu-Yeon Wei,et al.  A Fully-Integrated 3-Level DC-DC Converter for Nanosecond-Scale DVFS , 2012, IEEE Journal of Solid-State Circuits.

[20]  Anantha Chandrakasan,et al.  A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[21]  Kevin G. Stawiasz,et al.  5.2 Distributed system of digitally controlled microregulators enabling per-core DVFS for the POWER8TM microprocessor , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[22]  Takayasu Sakurai,et al.  13% Power reduction in 16b integer unit in 40nm CMOS by adaptive power supply voltage control with parity-based error prediction and detection (PEPD) and fully integrated digital LDO , 2012, 2012 IEEE International Solid-State Circuits Conference.