Representable (𝕋,V)$(\mathbb {T}, V)$-categories

Working in the framework of (𝕋,V)$(\mathbb {T},\textbf {V})$-categories, for a symmetric monoidal closed category V and a (not necessarily cartesian) monad 𝕋$\mathbb {T}$, we present a common account to the study of ordered compact Hausdorff spaces and stably compact spaces on one side and monoidal categories and representable multicategories on the other one. In this setting we introduce the notion of dual for (𝕋,V)$(\mathbb {T},\textbf {V})$-categories.

[1]  M. Stone Topological representations of distributive lattices and Brouwerian logics , 1938 .

[2]  S. Lack,et al.  The formal theory of monads II , 2002 .

[3]  Dirk Hofmann,et al.  Lawvere Completeness in Topology , 2007, Appl. Categorical Struct..

[4]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[5]  Ross Street,et al.  Variation through enrichment , 1983 .

[6]  E. Riehl Basic concepts of enriched category theory , 2014 .

[7]  Walter Tholen,et al.  Ordered Topological Structures , 2009 .

[8]  H. Simmons,et al.  A couple of triples , 1982 .

[9]  K. Hofmann,et al.  A Compendium of Continuous Lattices , 1980 .

[10]  Dirk Hofmann,et al.  Monoidal topology : a categorical approach to order, metric, and topology , 2014 .

[11]  Dirk Hofmann,et al.  Relative injectivity as cocompleteness for a class of distributors , 2008 .

[12]  Jimmie D. Lawson,et al.  Stably compact spaces , 2010, Mathematical Structures in Computer Science.

[13]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[14]  Hilary A. Priestley,et al.  Representation of Distributive Lattices by means of ordered Stone Spaces , 1970 .

[15]  Martín Hötzel Escardó,et al.  Semantic Domains, Injective Spaces and Monads , 1999, MFPS.

[16]  Robert Rosebrugh,et al.  Distributive laws and factorization , 2002 .

[17]  Melvin Hochster,et al.  Prime ideal structure in commutative rings , 1969 .

[18]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[19]  Dirk Hofmann,et al.  DUALITY FOR DISTRIBUTIVE SPACES , 2010 .

[20]  Dirk Hofmann,et al.  Injective Spaces via Adjunction , 2008, 0804.0326.

[21]  Dimitri Chikhladze LAX FORMAL THEORY OF MONADS, MONOIDAL APPROACH TO BICATEGORICAL STRUCTURES AND GENERALIZED OPERADS , 2014, 1412.4628.

[22]  Bob Flagg Algebraic theories of compact pospaces , 1997 .

[23]  Walter Tholen,et al.  Metric, topology and multicategory—a common approach , 2003 .

[24]  Dirk Hofmann,et al.  Topological theories and closed objects , 2007 .

[25]  M. Stone The theory of representations for Boolean algebras , 1936 .

[26]  A. Kock Monads for which Structures are Adjoint to Units , 1995 .

[27]  ON PROPERTY-LIKE STRUCTURES , 1997 .

[28]  Claudio Hermida From coherent structures to universal properties , 2000 .

[29]  Carl A. Gunter,et al.  Semantic Domains , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[30]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[31]  Achim Jung,et al.  Stably Compact Spaces and the Probabilistic Powerspace construction , 2004, DTMPP.