Charged strange star model in Tolman–Kuchowicz spacetime in the background of 5D Einstein–Maxwell–Gauss–Bonnet gravity

[1]  M. K. Jasim,et al.  A simple protocol for anisotropic generalization of Finch–Skea model by gravitational decoupling satisfying vanishing complexity factor condition , 2022, The European Physical Journal C.

[2]  A. Ditta,et al.  Anisotropic electrically charged stars in f(Q) symmetric teleparallel gravity , 2022, The European Physical Journal Plus.

[3]  T. Xia,et al.  Physical implications of teleparallel gravity on stellar configurations with modified Van der Waals equation of state: a broader view , 2022, The European Physical Journal Plus.

[4]  A. Ditta,et al.  Charged strange stars with dust and phantom regimes in Rastall gravity , 2022, Chinese Journal of Physics.

[5]  M. Daoud,et al.  Role of Complexity on Self‐gravitating Compact Star by Gravitational Decoupling , 2022 .

[6]  S. Hansraj Charged dust in higher curvature geometry , 2022, The European Physical Journal C.

[7]  Y. Khedif,et al.  Anisotropic stars of class one space–time in f(R,T) gravity under the simplest linear functional of the matter-geometry coupling , 2022, Chinese Journal of Physics.

[8]  Y. Khedif,et al.  Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach , 2021, Chinese Physics C.

[9]  S. Capozziello,et al.  The 3+1 formalism in teleparallel and symmetric teleparallel gravity , 2021, The European Physical Journal C.

[10]  K. Singh,et al.  Anisotropic stars via embedding approach in Brans–Dicke gravity , 2021, The European Physical Journal C.

[11]  A. Banerjee,et al.  Anisotropic quark stars in Einstein-Gauss-Bonnet theory , 2021 .

[12]  A. Banerjee,et al.  Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations , 2021, Annals of Physics.

[13]  Y. Khedif,et al.  Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.

[14]  Haoting Xu,et al.  Hawking evaporation of Einstein–Gauss–Bonnet AdS black holes in D⩾4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\g , 2021, The European Physical Journal C.

[15]  A. Banerjee,et al.  All conformally flat Einstein–Gauss–Bonnet static metrics , 2021, 2102.06041.

[16]  M. Daoud,et al.  Anisotropic stars in $$f({\textit{G}},{\textit{T}})$$ gravity under class I space-time , 2020 .

[17]  M. Daoud,et al.  Anisotropic Karmarkar stars in f(R, T)-gravity , 2020, The European Physical Journal C.

[18]  M. Daoud,et al.  Exploring physical properties of compact stars in f(R,T)-gravity: An embedding approach , 2020, Chinese Physics C.

[19]  M. Daoud,et al.  Anisotropic relativistic fluid spheres: an embedding class I approach , 2019, The European Physical Journal C.

[20]  S. Capozziello,et al.  Noether symmetries in symmetric teleparallel cosmology , 2019, The European Physical Journal C.

[21]  S. Hansraj,et al.  The role of an equation of state in the dynamical (in)stability of a radiating star , 2019, The European Physical Journal C.

[22]  M. Govender,et al.  Temperature evolution in the presence of anisotropic stresses , 2018, Astrophysics and Space Science.

[23]  Sushant G. Ghosh,et al.  Quintessence background for 5D Einstein–Gauss–Bonnet black holes , 2016, 1611.02936.

[24]  S. Maharaj,et al.  Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.

[25]  Wei Xu,et al.  Entropy relations and the application of black holes with the cosmological constant and Gauss-Bonnet term , 2015, 1501.03556.

[26]  E. Berti,et al.  Slowly rotating anisotropic neutron stars in general relativity and scalar–tensor theory , 2014, 1411.6286.

[27]  C. de Rham Massive Gravity , 2014, Living reviews in relativity.

[28]  S. Jhingan,et al.  Spherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity , 2014, 1403.2069.

[29]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[30]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[31]  S. Ransom,et al.  Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.

[32]  A. Marunovi'c,et al.  Radial pulsations and stability of anisotropic stars with a quasi-local equation of state , 2010, 1010.0878.

[33]  L. Núñez,et al.  Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.

[34]  C. Boehmer,et al.  Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.

[35]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[36]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[37]  L. Herrera,et al.  Tidal forces and fragmentation of self-gravitating compact objects , 1994 .

[38]  R. Myers,et al.  Black holes in higher dimensional space-times , 1986 .

[39]  S. Chandrasekhar The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .

[40]  G. Grimaldi,et al.  Il nuovo cimento , 1889 .