Charged strange star model in Tolman–Kuchowicz spacetime in the background of 5D Einstein–Maxwell–Gauss–Bonnet gravity
暂无分享,去创建一个
[1] M. K. Jasim,et al. A simple protocol for anisotropic generalization of Finch–Skea model by gravitational decoupling satisfying vanishing complexity factor condition , 2022, The European Physical Journal C.
[2] A. Ditta,et al. Anisotropic electrically charged stars in f(Q) symmetric teleparallel gravity , 2022, The European Physical Journal Plus.
[3] T. Xia,et al. Physical implications of teleparallel gravity on stellar configurations with modified Van der Waals equation of state: a broader view , 2022, The European Physical Journal Plus.
[4] A. Ditta,et al. Charged strange stars with dust and phantom regimes in Rastall gravity , 2022, Chinese Journal of Physics.
[5] M. Daoud,et al. Role of Complexity on Self‐gravitating Compact Star by Gravitational Decoupling , 2022 .
[6] S. Hansraj. Charged dust in higher curvature geometry , 2022, The European Physical Journal C.
[7] Y. Khedif,et al. Anisotropic stars of class one space–time in f(R,T) gravity under the simplest linear functional of the matter-geometry coupling , 2022, Chinese Journal of Physics.
[8] Y. Khedif,et al. Exploring physical features of anisotropic quark stars in Brans-Dicke theory with a massive scalar field via embedding approach , 2021, Chinese Physics C.
[9] S. Capozziello,et al. The 3+1 formalism in teleparallel and symmetric teleparallel gravity , 2021, The European Physical Journal C.
[10] K. Singh,et al. Anisotropic stars via embedding approach in Brans–Dicke gravity , 2021, The European Physical Journal C.
[11] A. Banerjee,et al. Anisotropic quark stars in Einstein-Gauss-Bonnet theory , 2021 .
[12] A. Banerjee,et al. Quark stars in the Einstein–Gauss–Bonnet theory: A new branch of stellar configurations , 2021, Annals of Physics.
[13] Y. Khedif,et al. Anisotropic compact stars via embedding approach in general relativity: new physical insights of stellar configurations , 2021, The European Physical Journal C.
[14] Haoting Xu,et al. Hawking evaporation of Einstein–Gauss–Bonnet AdS black holes in D⩾4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\g , 2021, The European Physical Journal C.
[15] A. Banerjee,et al. All conformally flat Einstein–Gauss–Bonnet static metrics , 2021, 2102.06041.
[16] M. Daoud,et al. Anisotropic stars in $$f({\textit{G}},{\textit{T}})$$ gravity under class I space-time , 2020 .
[17] M. Daoud,et al. Anisotropic Karmarkar stars in f(R, T)-gravity , 2020, The European Physical Journal C.
[18] M. Daoud,et al. Exploring physical properties of compact stars in f(R,T)-gravity: An embedding approach , 2020, Chinese Physics C.
[19] M. Daoud,et al. Anisotropic relativistic fluid spheres: an embedding class I approach , 2019, The European Physical Journal C.
[20] S. Capozziello,et al. Noether symmetries in symmetric teleparallel cosmology , 2019, The European Physical Journal C.
[21] S. Hansraj,et al. The role of an equation of state in the dynamical (in)stability of a radiating star , 2019, The European Physical Journal C.
[22] M. Govender,et al. Temperature evolution in the presence of anisotropic stresses , 2018, Astrophysics and Space Science.
[23] Sushant G. Ghosh,et al. Quintessence background for 5D Einstein–Gauss–Bonnet black holes , 2016, 1611.02936.
[24] S. Maharaj,et al. Exact EGB models for spherical static perfect fluids , 2015, 1502.02219.
[25] Wei Xu,et al. Entropy relations and the application of black holes with the cosmological constant and Gauss-Bonnet term , 2015, 1501.03556.
[26] E. Berti,et al. Slowly rotating anisotropic neutron stars in general relativity and scalar–tensor theory , 2014, 1411.6286.
[27] C. de Rham. Massive Gravity , 2014, Living reviews in relativity.
[28] S. Jhingan,et al. Spherical gravitational collapse in 5D Einstein-Gauss-Bonnet gravity , 2014, 1403.2069.
[29] R. Lynch,et al. A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.
[30] S. Capozziello,et al. Extended Theories of Gravity , 2011, 1108.6266.
[31] S. Ransom,et al. Shapiro delay measurement of a two solar mass neutron star , 2010, 1010.5788.
[32] A. Marunovi'c,et al. Radial pulsations and stability of anisotropic stars with a quasi-local equation of state , 2010, 1010.0878.
[33] L. Núñez,et al. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.
[34] C. Boehmer,et al. Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.
[35] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[36] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[37] L. Herrera,et al. Tidal forces and fragmentation of self-gravitating compact objects , 1994 .
[38] R. Myers,et al. Black holes in higher dimensional space-times , 1986 .
[39] S. Chandrasekhar. The Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity. , 1964 .
[40] G. Grimaldi,et al. Il nuovo cimento , 1889 .