Automatic synthesis of hardware accelerator from high-level specifications of physical layers for flexible radio

The Internet of Things (IoT) aims at connecting billions of communicating devices through an internet-like network. To this aim, the access to these things is expected to be performed via wireless technologies without using any predefined infrastructures or standards. This technology requires defining and implementing smart nodes capable to adapt to different radio communication protocols. In this thesis, we have defined a design methodology/flow, for such smart nodes, starting from their high-level specification down to their implementation in FPGA fabrics. This flow aims at improving the programmability of the waveforms by leveraging some high-level specifications. Thus, it relies on the High-Level Synthesis (HLS) for rapid prototyping of the waveforms functional blocks as well as the dataflow model of computation. Its entry point is Domain-Specific Language which enables modeling a waveform while inserting some implementation constraints for reconfigurable architectures such as the FPGAs. The flow is featured with a compiler which purpose is to produce some synthesis scripts and generate some RTL source code. The final waveform consists of a datapath and a control unit implemented as a Hierarchical Finite State Machine (HFSM).

[1]  John McCarthy LISP for SHARE Distribution , 1962 .

[2]  Gilles Kahn,et al.  The Semantics of a Simple Language for Parallel Programming , 1974, IFIP Congress.

[3]  Jules J. Berman,et al.  Ruby: The Programming Language , 2008 .

[4]  Kevin Marquet,et al.  Software defined radio architecture survey for cognitive testbeds , 2012, 2012 8th International Wireless Communications and Mobile Computing Conference (IWCMC).

[5]  Matthieu Gautier,et al.  Cyclostationarity Detection of DVB-T Signal: Testbed and Measurement , 2011 .

[6]  Fabien Clermidy,et al.  An Open and Reconfigurable Platform for 4G Telecommunication: Concepts and Application , 2009, 2009 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools.

[7]  N. Ranganathan,et al.  CHESS: a comprehensive tool for CDFG extraction and synthesis of low power designs from VHDL , 2006, IEEE Computer Society Annual Symposium on Emerging VLSI Technologies and Architectures (ISVLSI'06).

[8]  Lajos Hanzo,et al.  Green radio: radio techniques to enable energy-efficient wireless networks , 2011, IEEE Communications Magazine.

[9]  R. Benjamin,et al.  The role and scope of digital signal processing in communications systems , 1978 .

[10]  Jacques Palicot,et al.  De la radio logicielle à la radio intelligente , 2008 .

[11]  P. Coulton,et al.  An SDR inspired design for the FPGA implementation of 802.11a baseband system , 2004, IEEE International Symposium on Consumer Electronics, 2004.

[12]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[13]  K. Mani Chandy,et al.  A comparison of list schedules for parallel processing systems , 1974, Commun. ACM.

[14]  Trevor Mudge,et al.  SPEX: A Programming Language for Software Defined Radio , 2006 .

[15]  Guy Gogniat,et al.  A co-design approach for embedded system modeling and code generation with UML and MARTE , 2009, 2009 Design, Automation & Test in Europe Conference & Exhibition.

[17]  Kees Moerman,et al.  Vector Processing as an Enabler for Software-Defined Radio in Handheld Devices , 2005, EURASIP J. Adv. Signal Process..

[18]  Leslie Choong Multi-Channel IEEE 802.15.4 Packet Capture Using Software Deflned Radio , 2009 .

[19]  Aria Nosratinia,et al.  Cooperative communication in wireless networks , 2004, IEEE Communications Magazine.

[20]  Mickaël Raulet,et al.  Rapid Prototyping for Video Coding over Flexible Radio Links , 2014 .

[21]  Tom Feist,et al.  Vivado Design Suite , 2012 .

[22]  Dale J. Mortensen,et al.  Space Telecommunications Radio System (STRS) Architecture Standard. Release 1.02.1 , 2012 .

[23]  Eugene Grayver Implementing Software Defined Radio , 2013 .

[24]  Shuvra S. Bhattacharyya,et al.  Rapid prototyping for digital signal processing systems using Parameterized Synchronous Dataflow graphs , 2010, Proceedings of 2010 21st IEEE International Symposium on Rapid System Protyping.

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  E.A. Lee,et al.  Synchronous data flow , 1987, Proceedings of the IEEE.

[27]  Jason Cong,et al.  High-Level Synthesis for FPGAs: From Prototyping to Deployment , 2011, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[28]  Fabien Clermidy,et al.  Open Platform for Prototyping of Advanced Software Defined Radio and Cognitive Radio Techniques , 2009, 2009 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools.

[29]  J. Mitola,et al.  Software radios: Survey, critical evaluation and future directions , 1992, IEEE Aerospace and Electronic Systems Magazine.

[30]  Rabéa Ameur-Boulifa,et al.  DiplodocusDF, a Domain-Specific Modelling Language for Software Defined Radio Applications , 2012, 2012 38th Euromicro Conference on Software Engineering and Advanced Applications.

[31]  E. Grayver,et al.  SDRPHY - XML description for SDR physical layer , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[32]  Jari Nurmi,et al.  State of the art baseband DSP platforms for Software Defined Radio: A survey , 2011, EURASIP J. Wirel. Commun. Netw..

[33]  Michael H. Schulz,et al.  SOCRATES: a highly efficient automatic test pattern generation system , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[34]  Friedrich Jondral,et al.  Software-Defined Radio—Basics and Evolution to Cognitive Radio , 2005, EURASIP J. Wirel. Commun. Netw..

[35]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[36]  Grigorios Kalivas Digital Radio System Design , 2010 .

[37]  C. Kuo,et al.  Multi-standard DSP based wireless system , 1998, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344).

[38]  Mohamed I. Elmasry,et al.  VLSI design synthesis with testability , 1988, 25th ACM/IEEE, Design Automation Conference.Proceedings 1988..

[39]  Felix Wortmann,et al.  Internet of Things , 2015, Business & Information Systems Engineering.

[40]  Qiang Wu,et al.  A hierarchical CDFG as intermediate representation for hardware/software codesign , 2002, IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions.

[41]  Implementing FPGA Design with the OpenCL Standard , 2010 .

[42]  Gary Smith,et al.  High-Level Synthesis: Past, Present, and Future , 2009, IEEE Design & Test of Computers.

[43]  E. D. Willink,et al.  The waveform description language: moving from implementation to specification , 2001, 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277).

[44]  V.R. Petty,et al.  KUAR: A Flexible Software-Defined Radio Development Platform , 2007, 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks.

[45]  José María Gómez Hidalgo,et al.  Towards an IEEE 802.15.4 SDR transceiver , 2010, 2010 17th IEEE International Conference on Electronics, Circuits and Systems.

[46]  Daniel P. Siewiorek,et al.  Automated Synthesis of Data Paths in Digital Systems , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[47]  Olivier Sentieys,et al.  Design Space Exploration in an FPGA-Based Software Defined Radio , 2014, 2014 17th Euromicro Conference on Digital System Design.

[48]  Stephen A. Edwards,et al.  The Challenges of Synthesizing Hardware from C-Like Languages , 2006, IEEE Design & Test of Computers.

[49]  Dominique Noguet,et al.  Cyclostationarity Detectors for Cognitive Radio: Architectural Tradeoffs , 2010, EURASIP J. Wirel. Commun. Netw..

[50]  Rudy Lauwereins,et al.  A Coarse-Grained Array Accelerator for Software-Defined Radio Baseband Processing , 2008, IEEE Micro.

[51]  J. Paul Roth,et al.  Diagnosis of automata failures: a calculus and a method , 1966 .

[52]  Todor Cooklev,et al.  Standards for Wireless Personal Area Networking (WPAN) , 2004 .

[53]  Olivier Sentieys,et al.  GAUT: An architectural synthesis tool for dedicated signal processors , 1993, Proceedings of EURO-DAC 93 and EURO-VHDL 93- European Design Automation Conference.

[54]  Falko Dressler,et al.  Towards an Open Source IEEE 802.11p stack: A full SDR-based transceiver in GNU Radio , 2013, 2013 IEEE Vehicular Networking Conference.

[55]  Louise Trevillyan,et al.  LSS: A system for production logic synthesis , 1984, IBM Journal of Research and Development.

[56]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[57]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[58]  Joaquin Miller,et al.  MDA Guide Version 1.0.1 , 2003 .

[59]  Edward A. Lee,et al.  Taming heterogeneity - the Ptolemy approach , 2003, Proc. IEEE.

[60]  Marko Kosunen,et al.  Implementation of Cyclostationary Feature Detector for Cognitive Radios , 2009, 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications.

[61]  E. F. CODD,et al.  A relational model of data for large shared data banks , 1970, CACM.

[62]  Edward A. Lee,et al.  DSP Processor Fundamentals: Architectures and Features , 1997 .

[63]  Edward A. Lee,et al.  Software Synthesis from Dataflow Graphs , 1996 .

[64]  Sudharman K. Jayaweera,et al.  Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks , 2006, IEEE Transactions on Wireless Communications.

[65]  Liu Quan,et al.  The Software Communication Architecture specification: Evolution and trends , 2009, 2009 Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA).

[66]  D.N. Truong,et al.  A complete real-time 802.11a baseband receiver implemented on an array of programmable processors , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[67]  Kazutoshi Wakabayashi C-based behavioral synthesis and verification analysis on industrial design examples , 2004, ASP-DAC.

[68]  Frank Budinsky,et al.  Eclipse Modeling Framework , 2003 .

[69]  U. Pesovic,et al.  Implementation of IEEE 802.15.4 transceiver on software defined radio platform , 2012, 2012 20th Telecommunications Forum (TELFOR).

[70]  Jacques Palicot,et al.  Two Scenarios of Flexible Multi-Standard Architecture Designs using a Multi-Granularity Exploration , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[71]  Chris Leong Software Defined Radio Design for An IEEE 802.11a Transceiver using Open Source Software Communications Architecture (SCA) Implementation::Embedded (OSSIE) , 2006 .

[72]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[73]  R. Saravanan,et al.  ENERGY DETECTION BASED SPECTRUM SENSING FOR COGNITIVE RADIO , 2013 .

[74]  Peter M. Athanas,et al.  Enabling development of OpenCL applications on FPGA platforms , 2013, 2013 IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors.

[75]  Daniel Brand,et al.  BooleDozer: Logic synthesis for ASICs , 1996, IBM J. Res. Dev..

[76]  George Economakos,et al.  ESL as a Gateway from OpenCL to FPGAs: Basic Ideas and Methodology Evaluation , 2012, 2012 16th Panhellenic Conference on Informatics.

[77]  Ashish B. Shah,et al.  Common Object Request Broker Architecture (CORBA) , 2015 .

[78]  G. Fettweis,et al.  A fully programmable 40 GOPS SDR single chip baseband for LTE/WiMAX terminals , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[79]  J. Zyren Overview of the 3 GPP Long Term Evolution Physical Layer , 2007 .

[80]  Davide Brunelli,et al.  Wireless Sensor Networks , 2012, Lecture Notes in Computer Science.

[81]  Olivier Sentieys,et al.  A frame-based domain-specific language for rapid prototyping of FPGA-based software-defined radios , 2014, EURASIP J. Adv. Signal Process..

[82]  Jörg Kliewer,et al.  A network coding approach to cooperative diversity , 2007, IEEE Transactions on Information Theory.