A 2.4-GHz ISM RF and UWB hybrid RFID real-time locating system for industrial enterprise Internet of Things

ABSTRACT This paper presents a 2.4-GHz radio frequency (RF) and ultra-wide bandwidth (UWB) hybrid real-time locating system (RTLS) for industrial enterprise Internet of Things (IoT). It employs asymmetric wireless link, that is, UWB radio is utilised for accurate positioning up to 10 cm in critical sites, whereas 2.4-GHz RF is used for tag control and coarse positioning in non-critical sites. The specified communication protocol and the adaptive tag synchronisation rate ensure reliable and deterministic access with a scalable system capacity and avoid unpredictable latency and additional energy consumption of retransmissions due to collisions. The tag, consisting of a commercial 2.4-GHz transceiver and a customised application-specific integrated circuit (ASIC) UWB transmitter (Tx), is able to achieve up to 3 years’ battery life at 1600 tags per position update second with 1000 mAh battery in one cluster. The time difference of arrival (TDoA)–based positioning experiment at UWB radio is performed on the designed software-defined radio (SDR) platform.

[1]  Abdulsalam Yassine,et al.  An RFID-Based Position and Orientation Measurement System for Mobile Objects in Intelligent Environments , 2012, IEEE Transactions on Instrumentation and Measurement.

[2]  Dan Feng,et al.  iOSDC : A Novel Autonomous Intelligent OSD Cluster , 2007, 2007 International Conference on Convergence Information Technology (ICCIT 2007).

[3]  Jing Liu,et al.  Survey of Wireless Indoor Positioning Techniques and Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Bin Shen,et al.  Linear quadrature optimisation-based non-coherent time of arrival estimation scheme for impulse radio ultra-wideband systems , 2010, IET Commun..

[5]  Hannu Tenhunen,et al.  A remote-powered RFID tag with 10Mb/s UWB uplink and −18.5dBm sensitivity UHF downlink in 0.18µm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[6]  Lida Xu,et al.  Enterprise Systems: State-of-the-Art and Future Trends , 2011, IEEE Transactions on Industrial Informatics.

[7]  Vladimir Shin,et al.  Mobile Node Localization Using Fusion Prediction-Based Interacting Multiple Model in Cricket Sensor Network , 2012, IEEE Transactions on Industrial Electronics.

[8]  Li-Rong Zheng,et al.  Energy detection receiver with TOA estimation enabling positioning in passive UWB-RFID system , 2010, 2010 IEEE International Conference on Ultra-Wideband.

[9]  Tongjuan Liu,et al.  The application of Wi-Fi RTLS in automatic warehouse management system , 2011, 2011 IEEE International Conference on Automation and Logistics (ICAL).

[10]  Giuseppe Portelli,et al.  Design and implementation of a Bluetooth ad hoc network for indoor positioning , 2005, IEE Proc. Softw..

[11]  Lirong Zheng,et al.  Radio frequency identification enabled wireless sensing for intelligent food logistics , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Choi Look Law,et al.  Indoor Positioning Using UWB-IR Signals in the Presence of Dense Multipath with Path Overlapping , 2012, IEEE Transactions on Wireless Communications.

[13]  Jeff Johnson,et al.  Ultra-wideband Aiding of GPS for Quick Deployment of Anchors in a GPS-denied Ad-hoc Sensor Tracking and Communication System , 2011 .

[14]  John Krumm,et al.  Location-aware computing comes of age , 2004, Computer.

[15]  Igor Bisio,et al.  A Trainingless WiFi Fingerprint Positioning Approach Over Mobile Devices , 2014, IEEE Antennas and Wireless Propagation Letters.

[16]  Peng Wang,et al.  A 90nm CMOS UHF/UWB asymmetric transceiver for RFID readers , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[17]  Wei Cheng,et al.  On the Design and Deployment of RFID Assisted Navigation Systems for VANETs , 2012, IEEE Transactions on Parallel and Distributed Systems.

[18]  Li-Rong Zheng,et al.  A flexible back-end with optimum threshold estimation for OOK based energy detection IR-UWB receivers , 2011, 2011 IEEE International Conference on Ultra-Wideband (ICUWB).

[19]  Lida Xu,et al.  Internet of Things for Enterprise Systems of Modern Manufacturing , 2014, IEEE Transactions on Industrial Informatics.

[20]  Lirong Zheng,et al.  Software defined radio IR-UWB positioning platform for RFID and WSN application , 2012, 2012 IEEE International Conference on Ultra-Wideband.

[21]  Li-Rong Zheng,et al.  A 35 pJ/pulse injection-locking based UWB transmitter for wirelessly-powered RFID tags , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[22]  Gennaro Boggia,et al.  Standardized Protocol Stack for the Internet of (Important) Things , 2013, IEEE Communications Surveys & Tutorials.

[23]  Hannu Tenhunen,et al.  An efficient passive RFID system for ubiquitous identification and sensing using impulse UWB radio , 2007, Elektrotech. Informationstechnik.

[24]  Fredrik Tufvesson,et al.  UWB channel measurements in an industrial environment , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[25]  Luming Tan,et al.  Future internet: The Internet of Things , 2010, 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE).

[26]  Benjamin F. Absher,et al.  Robo-Tic: Development of a Tick-Eliminating Robot , 2014, IEEE Potentials.

[27]  Chi Zhou,et al.  Developing ZigBee Deployment Guideline Under WiFi Interference for Smart Grid Applications , 2011, IEEE Transactions on Smart Grid.

[28]  Marco Dionigi,et al.  A 5.6-GHz UWB Position Measurement System , 2013, IEEE Transactions on Instrumentation and Measurement.

[29]  Chengshuang Sun,et al.  Ultra-Wide Band Applications in Industry: A Critical Review , 2011 .

[30]  Philippe Lutz,et al.  Automation of assembly and packaging at the micro/nano-scale , 2011, 2011 IEEE International Conference on Automation Science and Engineering.

[31]  Chong Meng Samson See,et al.  A Real-Time Indoor WiFi Localization System Utilizing Smart Antennas , 2007, IEEE Transactions on Consumer Electronics.

[32]  Wan-Young Chung,et al.  Enhanced RSSI-Based Real-Time User Location Tracking System for Indoor and Outdoor Environments , 2007, 2007 International Conference on Convergence Information Technology (ICCIT 2007).

[33]  Andreas Terzis,et al.  Surviving wi-fi interference in low power ZigBee networks , 2010, SenSys '10.

[34]  Detlef Zühlke,et al.  SmartFactory - Towards a factory-of-things , 2010, Annu. Rev. Control..

[35]  Gerhard P. Hancke,et al.  Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches , 2009, IEEE Transactions on Industrial Electronics.

[36]  Ivan Stojmenovic,et al.  Partial Delaunay triangulation and degree limited localized Bluetooth scatternet formation , 2004, IEEE Transactions on Parallel and Distributed Systems.

[37]  Daniele Marioli,et al.  A Distributed Instrument for Performance Analysis of Real-Time Ethernet Networks , 2008, IEEE Transactions on Industrial Informatics.

[38]  Zheng Yang,et al.  High-Accuracy TDOA-Based Localization without Time Synchronization , 2013, IEEE Transactions on Parallel and Distributed Systems.

[39]  Wei Song,et al.  Collaborative material and production tracking in toy manufacturing , 2013, Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD).

[40]  Arash Shahi,et al.  Deterioration of UWB positioning during construction , 2012 .

[41]  J. Werb,et al.  Designing a positioning system for finding things and people indoors , 1998 .

[42]  Lida Xu,et al.  Enterprise Information Systems Architecture—Analysis and Evaluation , 2013, IEEE Transactions on Industrial Informatics.

[43]  Hing Kai Chan,et al.  Agent-Based Factory Level Wireless Local Positioning System With ZigBee Technology , 2010, IEEE Systems Journal.

[44]  Farid Golnaraghi,et al.  A Fastening Tool Tracking System Using an IMU and a Position Sensor With Kalman Filters and a Fuzzy Expert System , 2009, IEEE Transactions on Industrial Electronics.