Deep Learning Metocean Simulation and its Applications in Marine Simulation-based Design

[1]  Jing Shi,et al.  On comparing three artificial neural networks for wind speed forecasting , 2010 .

[2]  Razvan Pascanu,et al.  How to Construct Deep Recurrent Neural Networks , 2013, ICLR.

[3]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[4]  Michael Muskulus,et al.  Validation of a Markov-based Weather Model for Simulation of O&M for Offshore Wind Farms , 2012 .

[5]  William W. S. Wei,et al.  Time series analysis - univariate and multivariate methods , 1989 .

[6]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[7]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[8]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[9]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[10]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[11]  H. Robbins A Stochastic Approximation Method , 1951 .

[12]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[13]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[14]  Torgeir Moan,et al.  On some uncertainties related to the short term stochastic modelling of ocean waves , 1983 .

[15]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[16]  Zhang Chao,et al.  Short-term prediction of wind power based on deep Long Short-Term Memory , 2016, 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).

[17]  Christos Stefanakos,et al.  A unified methodology for the analysis, completion and simulation of nonstationary time series with missing values, with application to wave data , 2001 .

[18]  Gerassimos A. Athanassoulis,et al.  Bivariate Stochastic Simulation Based On Nonstationary Time Series Modelling , 2003 .

[19]  W. Pierson,et al.  A proposed spectral form for fully developed wind seas based on the similarity theory of S , 1964 .

[20]  Antonio J. Conejo,et al.  A methodology to generate statistically dependent wind speed scenarios , 2010 .

[21]  Mohammad Monfared,et al.  A new strategy for wind speed forecasting using artificial intelligent methods , 2009 .

[22]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[23]  Charu C. Aggarwal,et al.  Neural Networks and Deep Learning , 2018, Springer International Publishing.

[24]  Dina Makarynska,et al.  Artificial neural networks in wave predictions at the west coast of Portugal , 2005, Comput. Geosci..

[25]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[26]  Konstandinos A. Belibassakis,et al.  Nonstationary Stochastic Modelling of Multivariate Long-Term Wind and Wave Data , 2005 .

[27]  Michael Muskulus,et al.  A multivariate Markov Weather Model for O&M Simulation of Offshore Wind Parks☆ , 2013 .

[28]  Hamid Bahai,et al.  Simulation of the mean zero-up-crossing wave period using artificial neural networks trained with a simulated annealing algorithm , 2007 .

[29]  F. M. O'Carroll Weather Modelling for Offshore Operations , 1984 .

[30]  C. Guedes Soares,et al.  Analysis of sea waves and wind from X-band radar , 2005 .

[31]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[32]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[33]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[34]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[35]  G. C. Tiao,et al.  Multiple Time Series Modeling and Extended Sample Cross-Correlations , 1983 .

[36]  C. Guedes Soares,et al.  Modelling the long-term time series of significant wave height with non-linear threshold models , 2000 .

[37]  Frank Spellman,et al.  The Science of Renewable Energy , 2011 .

[38]  C. Guedes Soares,et al.  Comparison and assessment of three wave hindcasts in the North Atlantic Ocean , 2016 .

[39]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[40]  Amanda S. Hering,et al.  A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales , 2015 .

[41]  Tony R. Martinez,et al.  The general inefficiency of batch training for gradient descent learning , 2003, Neural Networks.

[42]  Stefan Krauter,et al.  Short term wind and energy prediction for offshore wind farms using neural networks , 2015, 2015 International Conference on Renewable Energy Research and Applications (ICRERA).

[43]  A. Sterl,et al.  A New Nonparametric Method to Correct Model Data: Application to Significant Wave Height from the ERA-40 Re-Analysis , 2005 .

[44]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  R G Standing,et al.  A METHOD FOR SYNTHESISING TIME HISTORY DATA FROM PERSISTENCE STATISTICS AND ITS USE IN OPERATIONAL MODELLING , 1987 .

[46]  Rajandrea Sethi,et al.  Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon , 2012, Eng. Appl. Artif. Intell..

[47]  Chang Lin,et al.  Neural network for wave forecasting among multi-stations , 2002 .

[48]  W. Rivera,et al.  Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks , 2009 .

[49]  Alok Bhargava,et al.  On the Theory of Testing for Unit Roots in Observed Time Series , 1986 .

[50]  C. Guedes Soares,et al.  Bivariate autoregressive models for the time series of significant wave height and mean period , 2000 .

[51]  Vladimir I. Piterbarg,et al.  Extreme values of the cyclostationary Gaussian random process , 1993 .

[52]  Parul Parashar,et al.  Neural Networks in Machine Learning , 2014 .

[53]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[54]  Oswaldo Morales-Nápoles,et al.  Probabilistic scheduling of offshore operations using copula based environmental time series: An application for cable installation management for offshore wind farms , 2016 .

[55]  Chung-Ren Chou,et al.  Study On Simulating the Time Series of Significant Wave Heights Near the Keelung Harbor , 2002 .

[56]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[57]  Hilde Haakenstad,et al.  A high‐resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea , 2011 .

[58]  Tom Schaul,et al.  Unit Tests for Stochastic Optimization , 2013, ICLR.

[59]  Roberto Mínguez,et al.  Climate-based Monte Carlo simulation of trivariate sea states , 2013 .

[61]  Peter G. Challenor,et al.  Statistical comparisons of satellite and model wave climatologies , 2002 .

[62]  K. Anastasiou,et al.  Persistence statistics of marine environmental parameters from Markov theory, Part 1: analysis in discrete time , 1996 .

[63]  Marc Prevosto,et al.  Survey of stochastic models for wind and sea state time series , 2007 .

[64]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[65]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[66]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[67]  Erik Vanem,et al.  Long-term time-dependent stochastic modelling of extreme waves , 2011 .

[68]  A. Hagen The extension of system boundaries in ship design , 2010 .

[69]  P. Camus,et al.  A hybrid efficient method to downscale wave climate to coastal areas , 2011 .

[70]  Héctor Allende,et al.  Recurrent networks for wind speed forecasting , 2016, ICPR 2016.

[71]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[72]  Henrique M. Gaspar Handling aspects of complexity in conceptual ship design , 2013 .

[73]  Josh Patterson,et al.  Deep Learning: A Practitioner's Approach , 2017 .

[74]  T. Barnett,et al.  Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP) , 1973 .

[75]  Athanasios Sfetsos,et al.  A comparison of various forecasting techniques applied to mean hourly wind speed time series , 2000 .

[76]  Michael Muskulus,et al.  Maintenance Strategies for Large Offshore Wind Farms , 2012 .

[77]  Vance L. Martin,et al.  Econometric Modelling with Time Series: Specification, Estimation and Testing , 2012 .

[78]  Richard S. J. Tol Autoregressive Conditional Heteroscedasticity in daily wind speed measurements , 1997 .

[79]  Lars Johanning,et al.  Calculating weather windows: Application to transit, installation and the implications on deployment success , 2013 .

[80]  Christos Stefanakos,et al.  A nonstationary stochastic model for long-term time series of significant wave height , 1995 .

[81]  Ruey S. Tsay,et al.  Multivariate Time Series Analysis: With R and Financial Applications , 2013 .

[82]  하태민 Dynamics and Modelling of Ocean Waves , 2016 .

[83]  Todd L. Walton,et al.  Simulation of Nonstationary, Non‐Gaussian Water Levels on Great Lakes , 1990 .

[84]  Pierre Ailliot,et al.  Markov-switching autoregressive models for wind time series , 2012, Environ. Model. Softw..

[85]  Z. Huang,et al.  Use of time-series analysis to model and forecast wind speed , 1995 .

[86]  Trond A. V. Johnsen,et al.  Integrated decision support approach for ship design , 2013, 2013 MTS/IEEE OCEANS - Bergen.

[87]  Norman W. Scheffner,et al.  Dredging Research Program: Simulation of Time Sequences of Wave Height, Period, and Direction , 1991 .

[88]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.