Minimal true-implies-false and true-implies-true sets of propositions in noncontextual hidden-variable theories

An essential ingredient in many examples of the conflict between quantum theory and noncontextual hidden variables (e.g., the proof of the Kochen-Specker theorem and Hardy's proof of Bell's theorem) is a set of atomic propositions about the outcomes of ideal measurements such that, when outcome noncontextuality is assumed, if proposition $A$ is true, then, due to exclusiveness and completeness, a nonexclusive proposition $B$ ($C$) must be false (true). We call such a set a {\em true-implies-false set} (TIFS) [{\em true-implies-true set} (TITS)]. Here we identify all the minimal TIFSs and TITSs in every dimension $d \ge 3$, i.e., the sets of each type having the smallest number of propositions. These sets are important because each of them leads to a proof of impossibility of noncontextual hidden variables and corresponds to a simple situation with quantum vs classical advantage. Moreover, the methods developed to identify them may be helpful to solve some open problems regarding minimal Kochen-Specker sets.

[1]  A. Cabello,et al.  Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.

[2]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[3]  M. Kleinmann,et al.  Quantum state-independent contextuality requires 13 rays , 2016, 1606.01848.

[4]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[5]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[6]  Allen Stairs Quantum Logic, Realism, and Value Definiteness , 1983, Philosophy of Science.

[7]  Jan-Åke Larsson,et al.  Pentagrams and Paradoxes , 2009, 0909.4713.

[8]  A Cabello "All versus nothing" inseparability for two observers. , 2001, Physical review letters.

[9]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[10]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[11]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[12]  L. Hardy,et al.  Nonlocality for two particles without inequalities for almost all entangled states. , 1993, Physical review letters.

[13]  Otfried Gühne,et al.  Optimal inequalities for state-independent contextuality. , 2012, Physical review letters.

[14]  Adán Cabello Quintero Pruebas algebraicas de imposibilidad de variables ocultas en mecánica cuántica , 1996 .

[15]  Marcelo Terra Cunha,et al.  Proposal of a two-qutrit contextuality test free of the finite precision and compatibility loopholes. , 2010, Physical review letters.

[16]  Asher Peres What's Wrong with These Observables? , 2002 .

[17]  F. Gonseth,et al.  DIE LOGIK NICHT GLEICHZEITIG ENTSCHEIDBARER AUSSAGEN , 1990 .

[18]  Giuseppe Vallone,et al.  Fully nonlocal quantum correlations , 2011, 1105.3598.

[19]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[20]  M. A. Can,et al.  Simple test for hidden variables in spin-1 systems. , 2007, Physical review letters.

[21]  Helle Bechmann Johansen Comment on ‘‘Getting contextual and nonlocal elements‐of‐reality the easy way,’’ by R. Clifton [Am. J. Phys. 61, 443–447 (1993)] , 1994 .

[22]  Lars Eirik Danielsen,et al.  Basic exclusivity graphs in quantum correlations , 2012, 1211.5825.

[23]  Ron Wright Generalized urn models , 1990 .

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Adán Cabello,et al.  Proposal for revealing quantum nonlocality via local contextuality. , 2009, Physical review letters.

[26]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[27]  E. Specker DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .

[28]  Adán Cabello,et al.  A simple proof of the Kochen-Specker theorem , 1994 .

[29]  Adán Cabello,et al.  Bell - Kochen - Specker theorem for any finite dimension , 1996 .

[30]  M. Bourennane,et al.  State-independent quantum contextuality with single photons. , 2009, Physical review letters.

[31]  K. Svozil,et al.  Automaton logic , 1996 .

[32]  K. Svozil Logical Equivalence Between Generalized Urn Models and Finite Automata , 2002, quant-ph/0209136.

[33]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[34]  Guang-Can Guo,et al.  Nonlocality from Local Contextuality. , 2016, Physical review letters.

[35]  Adán Cabello,et al.  A hidden-variables versus quantum mechanics experiment , 1995 .

[36]  P. Badziag,et al.  Universality of state-independent violation of correlation inequalities for noncontextual theories. , 2008, Physical review letters.

[37]  Mohamed Bourennane,et al.  Proposed experiments of qutrit state-independent contextuality and two-qutrit contextuality-based nonlocality , 2012, 1203.0981.

[38]  M. Bourennane,et al.  Simple hardy-like proof of quantum contextuality. , 2013, Physical review letters.

[39]  Rob Clifton,et al.  Getting contextual and nonlocal elements‐of‐reality the easy way , 1993 .

[40]  Pieter E. Vermaas Comment on ‘‘Getting contextual and nonlocal elements‐of‐reality the easy way,’’ by Rob Clifton [Am. J. Phys. 61, 443–447 (1993)] , 1994 .

[41]  C. H. Oh,et al.  State-independent proof of Kochen-Specker theorem with 13 rays. , 2011, Physical review letters.

[42]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.