Weak Identification in Fuzzy Regression Discontinuity Designs

In fuzzy regression discontinuity (FRD) designs, the treatment effect is identified through a discontinuity in the conditional probability of treatment assignment. We show that when identification is weak (i.e., when the discontinuity is of a small magnitude), the usual t-test based on the FRD estimator and its standard error suffers from asymptotic size distortions as in a standard instrumental variables setting. This problem can be especially severe in the FRD setting since only observations close to the discontinuity are useful for estimating the treatment effect. To eliminate those size distortions, we propose a modified t-statistic that uses a null-restricted version of the standard error of the FRD estimator. Simple and asymptotically valid confidence sets for the treatment effect can be also constructed using this null-restricted standard error. An extension to testing for constancy of the regression discontinuity effect across covariates is also discussed. Supplementary materials for this article are available online.

[1]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[2]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[3]  J. Hahn,et al.  IDENTIFICATION AND ESTIMATION OF TREATMENT EFFECTS WITH A REGRESSION-DISCONTINUITY DESIGN , 2001 .

[4]  Quantile Treatment Effects in the Regression Discontinuity Design , 2008 .

[5]  David S. Lee,et al.  Regression Discontinuity Designs in Economics , 2009 .

[6]  Sebastian Calonico,et al.  Robust Nonparametric Confidence Intervals for Regression‐Discontinuity Designs , 2014 .

[7]  David A. Jaeger,et al.  Problems with Instrumental Variables Estimation when the Correlation between the Instruments and the Endogenous Explanatory Variable is Weak , 1995 .

[8]  Donald W. K. Andrews,et al.  Optimal Two‐Sided Invariant Similar Tests for Instrumental Variables Regression , 2006 .

[9]  David Card,et al.  Does Medicare Save Lives? , 2007, The quarterly journal of economics.

[10]  Joshua D. Angrist,et al.  Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records , 1990 .

[11]  D. Andrews,et al.  Generic Results for Establishing the Asymptotic Size of Confidence Sets and Tests , 2011, Journal of Econometrics.

[12]  É. Renault,et al.  Efficient Minimum Distance Estimation with Multiple Rates of Convergence , 2012 .

[13]  C. S. Reichardt,et al.  Regression-discontinuity designs. , 2012 .

[14]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[15]  D. Campbell,et al.  Regression-Discontinuity Analysis: An Alternative to the Ex-Post Facto Experiment , 1960 .

[16]  M. Urquiola,et al.  Class-Size Caps, Sorting, and the Regression-Discontinuity Design , 2009 .

[17]  Jack Porter,et al.  Estimation in the Regression Discontinuity Model , 2003 .

[18]  R. Carter Hill Regression Discontinuity Designs , 2017 .

[19]  É. Renault,et al.  Efficient Gmm with Nearly-Weak Instruments , 2009 .

[20]  Stephen L. Morgan,et al.  Instrumental Variables Regression , 2014 .

[21]  W. V. D. Klaauw,et al.  Regression-Discontinuity Analysis: A Survey of Recent Developments in Economics , 2008 .

[22]  T. W. Anderson,et al.  Estimation of the Parameters of a Single Equation in a Complete System of Stochastic Equations , 1949 .

[23]  Richard J. Murnane,et al.  Extending the regression-discontinuity approach to multiple assignment variables , 2011 .

[24]  C. Hoxby The Effects of Class Size on Student Achievement: New Evidence from Population Variation , 2000 .

[25]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[26]  Oshua,et al.  USING MAIMONIDES’ RULE TO ESTIMATE THE EFFECT OF CLASS SIZE ON SCHOLASTIC ACHIEVEMENT* , 2003 .

[27]  W. V. D. Klaauw,et al.  Estimating the Effect of Financial Aid Offers on College Enrollment: A Regression-Discontinuity Approach , 2002 .

[28]  Bertille Antoine,et al.  Conditional moment models under semi-strong identification , 2014 .

[29]  Petra E. Todd,et al.  Evaluating the Effect of an Antidiscrimination Law Using a Regression-Discontinuity Design , 1999 .

[30]  D. Andrews,et al.  Estimation and Inference with Weak, Semi-Strong, and Strong Identification , 2010 .

[31]  Eduardo Fé Efficient estimation in regression discontinuity designs via asymmetric kernels , 2012 .

[32]  V. Spokoiny,et al.  Instrumental Variables Regression , 2018, Foundations of Modern Econometrics.

[33]  J. Stock,et al.  Inference with Weak Instruments , 2005 .

[34]  Markus Frölich,et al.  Quantile Treatment Effects in the Regression Discontinuity Design: Process Results and Gini Coefficient , 2010, SSRN Electronic Journal.

[35]  Marcelo J. Moreira A Conditional Likelihood Ratio Test for Structural Models , 2003 .

[36]  M. Frölich Regression Discontinuity Design with Covariates , 2007, SSRN Electronic Journal.

[37]  Victor Lavy,et al.  Using Maimonides' Rule to Estimate the Effect of Class Size on Student Achievement , 1999 .

[38]  J. Hahn,et al.  Discontinuities of weak instrument limiting distributions , 2002 .

[39]  Mehmet Caner Testing, Estimation in GMM and CUE with Nearly-Weak Identification , 2009 .

[40]  J. Davidson Stochastic Limit Theory , 1994 .

[41]  T. Lemieux,et al.  Supplement To "Weak Identification in Fuzzy Regression Discontinuity Designs" , 2015 .

[42]  Jonathan H. Wright,et al.  A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments , 2002 .

[43]  Jean-Marie Dufour,et al.  Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models , 1997 .

[44]  Ke-Li Xu,et al.  Empirical Likelihood for Regression Discontinuity Design , 2011 .

[45]  Anna Mikusheva Uniform Inference in Autoregressive Models , 2007 .

[46]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[47]  Philip Oreopoulos,et al.  Estimating Average and Local Average Treatment Effects of Education when Compulsory Schooling Laws Really Matter , 2006 .

[48]  S. Khandker,et al.  The impact of Group‐Based Credit Programs on Poor Households in Bangladesh: Does the Gender of Participants Matter? , 1998, Journal of Political Economy.

[49]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[50]  H. Ichimura,et al.  Optimal Bandwidth Selection for Differences of Nonparametric Estimators with an Application to the Sharp Regression Discontinuity Design , 2013 .

[51]  A. Lewbel,et al.  Regression Discontinuity Marginal Threshold Treatment Effects , 2011 .

[52]  M. Urquiola,et al.  Class Size and Sorting in Market Equilibrium: Theory and Evidence , 2007, SSRN Electronic Journal.

[53]  Andrae I. Khuri,et al.  Advanced Calculus with Applications in Statistics , 2003 .

[54]  Emmanuel Skoufias,et al.  An Evaluation of the Performance of Regression Discontinuity Design on Progresa , 2004 .

[55]  Justin McCrary,et al.  Manipulation of the Running Variable in the Regression Discontinuity Design , 2005 .

[56]  R. Lund Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg , 2006 .

[57]  Justin McCrary,et al.  Manipulation of the Running Variable in the Regression Discontinuity Design: A Density Test , 2007 .

[58]  R. Titiunik,et al.  Robust Nonparametric Bias-Corrected Inference in the Regression Discontinuity Design ∗ , 2012 .

[59]  Marcelo J. Moreira,et al.  Optimal Invariant Similar Tests for Instrumental Variables Regression , 2004 .

[60]  Markus Frölich,et al.  Quantile treatment eects in the regression discontinuity design , 2008 .

[61]  Frank Kleibergen,et al.  Pivotal statistics for testing structural parameters in instrumental variables regression , 2002 .

[62]  Michael Greenstone,et al.  WELCOME Does Hazardous Waste Matter ? Evidence from the Housing Market and the Superfund Program * , 2005 .

[63]  Marcelo J. Moreira,et al.  Tests based on t-statistics for IV regression with weak instruments , 2014 .

[64]  Marcelo J. Moreira Tests with correct size when instruments can be arbitrarily weak , 2009 .