Spectral partitioning works: planar graphs and finite element meshes

Spectral partitioning methods use the Fiedler vector-the eigenvector of the second-smallest eigenvalue of the Laplacian matrix-to find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on bounded-degree planar graphs and finite element meshes-the classes of graphs to which they are usually applied. While active spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O(/spl radic/n) for bounded-degree planar graphs and two-dimensional meshes and O(n/sup 1/d/) for well-shaped d-dimensional meshes. The heart of our analysis is an upper bound on the second-smallest eigenvalues of the Laplacian matrices of these graphs: we prove a bound of O(1/n) for bounded-degree planar graphs and O(1/n/sup 2/d/) for well-shaped d-dimensional meshes.

[1]  W. H. Steele Points , 1898, The Dental register.

[2]  James E. pLebensohn Geometry and the Imagination , 1952 .

[3]  W. T. Tutte A THEOREM ON PLANAR GRAPHS , 1956 .

[4]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[5]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[6]  E. M. Andreev ON CONVEX POLYHEDRA IN LOBAČEVSKIĬ SPACES , 1970 .

[7]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[8]  E. M. Andreev ON CONVEX POLYHEDRA OF FINITE VOLUME IN LOBAČEVSKIĬ SPACE , 1970 .

[9]  I. Fried Condition of finite element matrices generated from nonuniform meshes. , 1972 .

[10]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[11]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[12]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[13]  N. Biggs Algebraic Graph Theory , 1974 .

[14]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[15]  M. Fiedler Eigenvectors of acyclic matrices , 1975 .

[16]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[17]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[18]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[19]  J. Gilbert Graph separator theorems and sparse Gaussian elimination , 1980 .

[20]  E. Barnes An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[21]  B. Parlett,et al.  On estimating the largest eigenvalue with the Lanczos algorithm , 1982 .

[22]  A. Hoffman,et al.  Partitioning, Spectra and Linear Programming , 1984 .

[23]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[24]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[25]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[26]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[27]  N. Alon Eigenvalues and expanders , 1986, Comb..

[28]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[29]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[30]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, WG.

[31]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[32]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[33]  Feng Zhao,et al.  An {\it bf O(N)} Algorithm for Three-Dimensional N-body Simulations , 1987 .

[34]  Shahid H. Bokhari,et al.  A Partitioning Strategy for Nonuniform Problems on Multiprocessors , 1987, IEEE Transactions on Computers.

[35]  Frank Thomson Leighton,et al.  An approximate max-flow min-cut theorem for uniform multicommodity flow problems with applications to approximation algorithms , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[36]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[37]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[38]  T. Chan,et al.  A framework for the analysis and construction of domain decomposition preconditioners , 1988 .

[39]  Mark Jerrum,et al.  Conductance and the rapid mixing property for Markov chains: the approximation of permanent resolved , 1988, STOC '88.

[40]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[41]  Bojan Mohar,et al.  Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.

[42]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[43]  F. Chung Diameters and eigenvalues , 1989 .

[44]  Robin Thomas,et al.  A separator theorem for graphs with an excluded minor and its applications , 1990, STOC '90.

[45]  David Eppstein,et al.  Provably good mesh generation , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[46]  Gary L. Miller,et al.  Separators in two and three dimensions , 1990, STOC '90.

[47]  Roy D. Williams,et al.  Performance of dynamic load balancing algorithms for unstructured mesh calculations , 1991, Concurr. Pract. Exp..

[48]  Gary L. Miller,et al.  Density graphs and separators , 1991, SODA '91.

[49]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[50]  Gary L. Miller,et al.  A unified geometric approach to graph separators , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[51]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[52]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[53]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[54]  S. Teng Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .

[55]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[56]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[57]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[58]  Alex POTHENy,et al.  SPECTRAL NESTED DISSECTION , 1992 .

[59]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[60]  David Eppstein,et al.  A deterministic linear time algorithm for geometric separators and its applications , 1993, SCG '93.

[61]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[62]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[63]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[64]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[65]  Tony F. Chan,et al.  Domain decomposition and multigrid algorithms for elliptic problems on unstructured meshes , 1994 .

[66]  Vijay V. Vazirani,et al.  Finding separator cuts in planar graphs within twice the optimal , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[67]  Gary L. Miller,et al.  On the performance of spectral graph partitioning methods , 1995, SODA '95.

[68]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[69]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[70]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[71]  János Pach,et al.  Combinatorial Geometry , 2012 .

[72]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..

[73]  Shang-Hua Teng,et al.  Disk packings and planar separators , 1996, SCG '96.

[74]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[75]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[76]  Shang-Hua Teng,et al.  Combinatorial aspects of geometric graphs , 1998, Comput. Geom..

[77]  Shang-Hua Teng,et al.  Provably Good Partitioning and Load Balancing Algorithms for Parallel Adaptive N-Body Simulation , 1998, SIAM J. Sci. Comput..

[78]  Feng Zhao An O(N) Algorithm for Three-dimensional N-body Simulations , 2022 .