ICA+OPCA를 이용한 잡음에 강인한 뇌파 분류
暂无分享,去创建一个
Electroencephalogram (EEG)-based brain computer interface (BCI) provides a new communication channel between human brain and computer. EEG is very noisy data and contains artifacts. thus the extraction of features that are robust to noise and artifacts is important. In this paper we present a method with employ both independent component analysis (ICA) and oriented principal component analysis (OPCA) for artifact-robust feature extraction.
[1] 조성배,et al. 최적의 유전자 클러스터 분석을 위한 퍼지 c - Means 알고리즘 기반의 베이지안 검증 방법 , 2003 .