The New Generation of SOI MOSFETs

The classical MOSFET is reaching its scaling limits and “endof-roadmap” alternative devices are being investigated. Amongst the different types of SOI devices proposed, one clearly stands out: the multigate fieldeffect transistor (multigate FET). This device has a general “wire-like” shape. Multigate FETs are commonly referred to as “multi(ple)-gate transistors”, “FinFETs”, “tri(ple)-gate transistors”, “GAA transistors”, etc. This Paper describes the reasons for evolving from single-gate to multi-gate structures. It also describes some issues in ultra-small devices, such as doping fluctuation effects and quantum confinement effect.

[1]  X. Baie,et al.  A silicon-on-insulator quantum wire , 1996 .

[2]  O. Faynot,et al.  Multiple gate devices: advantages and challenges , 2005 .

[3]  C.R. Cleavelin,et al.  Room-Temperature Low-Dimensional Effects in Pi-Gate SOI MOSFETs , 2006, IEEE Electron Device Letters.

[4]  Zhixian Jiao Implementation of a fully depleted Delta-channel SOI NMOSFET , 2000 .

[5]  S. Horiguchi,et al.  Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs , 1993, IEEE Electron Device Letters.

[6]  S.C. Rustagi,et al.  Ultra-Narrow Silicon Nanowire Gate-All-Around CMOS Devices: Impact of Diameter, Channel-Orientation and Low Temperature on Device Performance , 2006, 2006 International Electron Devices Meeting.

[7]  F. Balestra,et al.  Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance , 1987, IEEE Electron Device Letters.

[8]  Max C. Lemme,et al.  Subthreshold behavior of triple-gate MOSFETs on SOI material , 2004 .

[9]  S.C. Rustagi,et al.  High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices , 2006, IEEE Electron Device Letters.

[10]  T. Skotnicki Heading for decananometer CMOS - Is navigation among icebergs still a viable strategy? , 2000, 30th European Solid-State Device Research Conference.

[11]  M. Masahara,et al.  Ideal rectangular cross-section Si-Fin channel double-gate MOSFETs fabricated using orientation-dependent wet etching , 2003, IEEE Electron Device Letters.

[12]  T. Hiramoto,et al.  Nano-scale silicon MOSFET: towards non-traditional and quantum devices , 2001, 2001 IEEE International SOI Conference. Proceedings (Cat. No.01CH37207).

[13]  C.R. Cleavelin,et al.  Quantum-mechanical effects in trigate SOI MOSFETs , 2006, IEEE Transactions on Electron Devices.

[14]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[15]  S. Cristoloveanu,et al.  Silicon-on-nothing MOSFETs: performance, short-channel effects, and backgate coupling , 2004, IEEE Transactions on Electron Devices.

[16]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[17]  Jean-Pierre Colinge,et al.  Device design guidelines for nano-scale MuGFETs , 2007 .

[18]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[19]  D. Hisamoto,et al.  A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET , 1989, International Technical Digest on Electron Devices Meeting.

[20]  G. Knoblinger,et al.  Low-temperature electron mobility in Trigate SOI MOSFETs , 2006, IEEE Electron Device Letters.

[21]  Jean-Pierre Colinge,et al.  Silicon-on-insulator 'gate-all-around' MOS device , 1990, 1990 IEEE SOS/SOI Technology Conference. Proceedings.

[22]  Chenming Hu,et al.  A folded-channel MOSFET for deep-sub-tenth micron era , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[23]  Jean-Pierre Colinge,et al.  Multiple-gate SOI MOSFETs: device design guidelines , 2002 .

[24]  T. Sekigawa,et al.  Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate , 1984 .