Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells.

The current work reports the simultaneous enhancement in efficiency and stability of low-temperature, solution-processed triple cation based MA0.57FA0.38Rb0.05PbI3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cells (PSCs) by means of adsorbed carbon nanomaterials at the perovskite/electron transporting layer interface. The quantity and quality of the adsorbents are precisely controlled to electronically modify the ETL surface and lower the energy barrier across the interface. Carbon derivatives namely fullerene (C60) and PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) are employed as adsorbents in conjunction with ZnO and together serve as a bilayer electron transporting layer (ETL). The adsorbed fullerene (C60-ZnO, abbreviated as C-ZnO) passivates the interstitial trap-sites of ZnO with interstitial intercalation of oxygen atoms in the ZnO lattice structure. C-ZnO ETL based PSCs demonstrate about a 19% higher average PCE compared to conventional ZnO ETL based devices and a nearly 9% higher average PCE than PC71BM adsorbed-ZnO (P-ZnO) ETL based PSCs. In addition, the interstitial trap-state passivation with a C-ZnO film upshifts the Fermi-level position of the C-ZnO ETL by 130 meV, with reference to the ZnO ETL, which contributes to an enhanced n-type conductivity. The photocurrent hysteresis phenomenon in C-ZnO PSCs is also substantially reduced due to mitigated charge trapping phenomena and concomitant reduction in an electrode polarization process. Another major highlight of this work is that, C-ZnO PSCs demonstrate a superior device stability retaining about 94% of its initial PCE in the course of a month-long, systematic degradation study conducted in our work. The enhanced device stability with C-ZnO PSCs is attributed to their high resistance to aging-induced recombination phenomena and a water-induced perovskite degradation process, due to a lower content of oxygen-related chemisorbed species on the C-ZnO ETL. The intricate mechanisms behind the efficiency and stability enhancement are investigated in detail and explained in the context of enhanced surface and interfacial electronic properties.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  D. P. Padiyan,et al.  Influence of thickness and substrate temperature on electrical and photoelectrical properties of vacuum-deposited CdSe thin films , 2003 .

[3]  S. N. Dolia,et al.  Switch ‘on’ and ‘off’ ferromagnetic ordering through the induction and removal of oxygen vacancies and carriers in doped ZnO: A magnetization and electronic structure study , 2010 .

[4]  Jae Cheol Lee,et al.  Effect of oxygen partial pressure on the Fermi level of ZnO1−x films fabricated by pulsed laser deposition , 2010 .

[5]  Juan Bisquert,et al.  Role of ZnO Electron-Selective Layers in Regular and Inverted Bulk Heterojunction Solar Cells , 2011 .

[6]  J. Bisquert,et al.  On Voltage, Photovoltage, and Photocurrent in Bulk Heterojunction Organic Solar Cells , 2011 .

[7]  Christoph J. Brabec,et al.  Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells , 2011 .

[8]  M. Bertino,et al.  Ferromagnetism in Li doped ZnO nanoparticles: The role of interstitial Li , 2012 .

[9]  W. Marsden I and J , 2012 .

[10]  C. Koo,et al.  High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors , 2012 .

[11]  N. Xu,et al.  Investigation of the effects of atomic oxygen exposure on the electrical and field emission properties of ZnO nanowires , 2013 .

[12]  M. Ozaki,et al.  Influences of dopant concentration in sol–gel derived AZO layer on the performance of P3HT:PCBM based inverted solar cell , 2013 .

[13]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[14]  Bert Conings,et al.  An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells , 2014 .

[15]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[16]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[17]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[18]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[19]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[20]  Jin Jang,et al.  Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics , 2014, Nanoscale Research Letters.

[21]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[22]  M. Grätzel,et al.  Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. , 2014, ACS nano.

[23]  Kwanghee Lee,et al.  Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer , 2014 .

[24]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[25]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[26]  K. S. Rahman,et al.  Growth optimization of ZnS thin films by RF magnetron sputtering as prospective buffer layer in thin film solar cells , 2014 .

[27]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[28]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[29]  Jianhui Hou,et al.  A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells , 2015 .

[30]  Alex K.-Y. Jen,et al.  Roles of Fullerene‐Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin‐Film Solar Cells , 2015 .

[31]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[32]  Alison B. Walker,et al.  Characterization of Planar Lead Halide Perovskite Solar Cells by Impedance Spectroscopy, Open-Circuit Photovoltage Decay, and Intensity-Modulated Photovoltage/Photocurrent Spectroscopy , 2015 .

[33]  Juan Bisquert,et al.  Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[34]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[35]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[36]  Xiang Fang,et al.  A promising alternative solvent of perovskite to induce rapid crystallization for high-efficiency photovoltaic devices , 2015 .

[37]  Zhiqiang Guan,et al.  Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. , 2015, ACS applied materials & interfaces.

[38]  Stephen Z. D. Cheng,et al.  High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer. , 2015, ACS applied materials & interfaces.

[39]  Zong-Liang Tseng,et al.  High efficiency stable inverted perovskite solar cells without current hysteresis , 2015 .

[40]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[41]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[42]  K. Yuan,et al.  Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells. , 2015, Nanoscale.

[43]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[44]  Wenchao Yang,et al.  Origin of the high open circuit voltage in planar heterojunction perovskite solar cells: Role of the reduced bimolecular recombination , 2015 .

[45]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[46]  Brian C. Berry,et al.  Comparative Aging Study of Organic Solar Cells Utilizing Polyaniline and PEDOT:PSS as Hole Transport Layers. , 2015, ACS applied materials & interfaces.

[47]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[48]  Monica Lira-Cantu,et al.  Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers , 2015 .

[49]  Jae-Yup Kim,et al.  Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells , 2016 .

[50]  A. Zakhidov,et al.  Reliable Annealing of CH3NH3PbI3 Films Deposited on ZnO , 2016 .

[51]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[52]  L. Schmidt‐Mende,et al.  Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing , 2016, Molecules.

[53]  R. Dauskardt,et al.  Cross-Linkable, Solvent-Resistant Fullerene Contacts for Robust and Efficient Perovskite Solar Cells with Increased JSC and VOC. , 2016, ACS applied materials & interfaces.

[54]  P. Pikhitsa,et al.  Trapped charge-driven degradation of perovskite solar cells , 2016, Nature Communications.

[55]  Chien-Hung Chiang,et al.  Film Grain-Size Related Long-Term Stability of Inverted Perovskite Solar Cells. , 2016, ChemSusChem.

[56]  J. Bisquert,et al.  Ionic Reactivity at Contacts and Aging of Methylammonium Lead Triiodide Perovskite Solar Cells , 2016 .

[57]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[58]  M. B. Upama,et al.  Simultaneous enhancement in stability and efficiency of low-temperature processed perovskite solar cells , 2016 .

[59]  M. Wright,et al.  Enhanced stability of low temperature processed perovskite solar cells via augmented polaronic intensity of hole transporting layer , 2016 .

[60]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[61]  P. Zhang,et al.  Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer , 2016 .

[62]  Yongqi Dong,et al.  Investigation of the Hydrolysis of Perovskite Organometallic Halide CH3NH3PbI3 in Humidity Environment , 2016, Scientific Reports.

[63]  Jong-Kwon Lee,et al.  Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency , 2016 .

[64]  Ashraf Uddin,et al.  Stability of perovskite solar cells , 2016 .

[65]  Xin Guo,et al.  Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. , 2016, Dalton transactions.

[66]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[67]  Ashraf Uddin,et al.  Hysteresis in organic-inorganic hybrid perovskite solar cells , 2016 .

[68]  Ashraf Uddin,et al.  Open circuit voltage of organic solar cells: an in-depth review , 2016 .

[69]  T. Miyasaka,et al.  Magnesium-doped Zinc Oxide as Electron Selective Contact Layers for Efficient Perovskite Solar Cells. , 2016, ChemSusChem.

[70]  Juan Bisquert,et al.  Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements , 2016 .

[71]  M. Green,et al.  Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation , 2016 .

[72]  M. B. Upama,et al.  Single Vs Mixed Organic Cation for Low Temperature Processed Perovskite Solar Cells , 2016 .

[73]  Riski Titian Ginting,et al.  Low-temperature operation of perovskite solar cells: With efficiency improvement and hysteresis-less , 2016 .

[74]  Yang Yang,et al.  High-efficiency robust perovskite solar cells on ultrathin flexible substrates , 2016, Nature Communications.

[75]  A. Jen,et al.  Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer , 2016, Advanced science.

[76]  Xinhua Li,et al.  Origin of the high performance of perovskite solar cells with large grains , 2016 .

[77]  M. B. Upama,et al.  A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[78]  E. Kymakis,et al.  Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer , 2017 .

[79]  Chunhui Huang,et al.  Rapid and Complete Conversion of CH3NH3PbI3 for Perovskite/C60 Planar-Heterojunction Solar Cells by Two-Step Deposition , 2017 .

[80]  M. B. Upama,et al.  Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells , 2017 .

[81]  H. Han,et al.  A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability , 2017 .

[82]  C. B. Nielsen,et al.  Highly efficient perovskite solar cells with crosslinked PCBM interlayers , 2017 .

[83]  M. B. Upama,et al.  Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells , 2017 .

[84]  S. Yoo,et al.  Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers , 2017 .

[85]  Yana Vaynzof,et al.  High performance planar perovskite solar cells by ZnO electron transport layer engineering , 2017 .

[86]  S. Nishiwaki,et al.  Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices , 2017 .

[87]  Cheng Xu,et al.  Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells , 2017 .

[88]  M. B. Upama,et al.  Solution-Processed Lithium-Doped ZnO Electron Transport Layer for Efficient Triple Cation (Rb, MA, FA) Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[89]  Jinsong Huang,et al.  The Functions of Fullerenes in Hybrid Perovskite Solar Cells , 2017 .

[90]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[91]  M. B. Upama,et al.  Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performance , 2017 .

[92]  M. B. Upama,et al.  Cesium compounds as interface modifiers for stable and efficient perovskite solar cells , 2018 .

[93]  Tsuyoshi Murata,et al.  {m , 1934, ACML.