The Design Reference Asteroid for the OSIRIS-REx Mission Target (101955) Bennu

The Design Reference Asteroid (DRA) is a compilation of all that is known about the OSIRIS-REx mission target, asteroid (101955) Bennu. It contains our best knowledge of the properties of Bennu based on an extensive observational campaign that began shortly after its discovery, and has been used to inform mission plan development and flight system design. The DRA will also be compared with post-encounter science results to determine the accuracy of our Earth-based characterization efforts. The extensive observations of Bennu in 1999 has made it one of the best-characterized near-Earth asteroids. Many physical parameters are well determined, and span a number of categories: Orbital, Bulk, Rotational, Radar, Photometric, Spectroscopic, Thermal, Surface Analog, and Environment Properties. Some results described in the DRA have been published in peer-reviewed journals while others have been reviewed by OSIRIS-REx Science Team members and/or external reviewers. Some data, such as Surface Analog Properties, are based on our best knowledge of asteroid surfaces, in particular those of asteroids Eros and Itokawa. This public release of the OSIRIS-REx Design Reference Asteroid is a annotated version of the internal OSIRIS-REx document OREX-DOCS-04.00-00002, Rev 9 (accepted by the OSIRIS-REx project on 2014-April-14). The supplemental data products that accompany the official OSIRIS-REx version of the DRA are not included in this release. We are making this document available as a service to future mission planners in the hope that it will inform their efforts.

[1]  K. Muinonen,et al.  Asteroid observations at low phase angles. IV: Average parameters for the new H, G1, G2 magnitude system , 2016 .

[2]  Richard P. Binzel,et al.  The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations , 2015 .

[3]  S. Berdyugina,et al.  Astrobiology Science Conference 2012 , 2015 .

[4]  D. Lauretta,et al.  Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu , 2014 .

[5]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[6]  F. DeMeo,et al.  Latitudinal Spectral Variations on Asteroid 101955 Bennu , 2013 .

[7]  Richard P. Binzel,et al.  Lightcurve, Color and Phase Function Photometry of the OSIRIS-REx Target Asteroid (101955) Bennu , 2013 .

[8]  Daniel J. Scheeres,et al.  Shape model and surface properties of the OSIRIS-REx target Asteroid (101955) Bennu from radar and lightcurve observations , 2013 .

[9]  B. Altieri,et al.  Physical properties of OSIRIS-REx target asteroid (101955) 1999 RQ36 - Derived from Herschel, VLT/ VISIR, and Spitzer observations , 2012, 1210.5370.

[10]  E. M. Ibrahim The Elastic Properties of Carbonaceous Chondrites , 2012 .

[11]  F. Spoto,et al.  Near Earth Asteroids with measurable Yarkovsky effect , 2012, 1212.4812.

[12]  Paul Mann,et al.  Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites , 2012 .

[13]  D. Britt,et al.  Stony meteorite thermal properties and their relationship with meteorite chemical and physical states , 2012 .

[14]  Richard P. Binzel,et al.  Asteroid (101955) 1999 RQ36: Spectroscopy from 0.4 to 2.4μm and meteorite analogs , 2011 .

[15]  D. Britt,et al.  Density, porosity, and magnetic susceptibility of carbonaceous chondrites , 2011 .

[16]  J. Borovička,et al.  Very low strengths of interplanetary meteoroids and small asteroids , 2011 .

[17]  David E. Trilling,et al.  Online multi-parameter phase-curve fitting and application to a large corpus of asteroid photometric data , 2011 .

[18]  Bonnie J. Buratti,et al.  A wavelength-dependent visible and infrared spectrophotometric function for the Moon based on ROLO data , 2011 .

[19]  David E. Smith,et al.  Global surface slopes and roughness of the Moon from the Lunar Orbiter Laser Altimeter , 2011 .

[20]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[21]  M. Gaffey,et al.  Spectral reflectance properties of ureilites , 2010 .

[22]  H. Melosh,et al.  Distributions of boulders ejected from lunar craters , 2010 .

[23]  I. Belskaya,et al.  Opposition effect of dark asteroids: diversity and albedo dependence , 2010 .

[24]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[25]  B. Yang,et al.  Water in B-type Asteroids , 2010 .

[26]  Andrew S. Rivkin,et al.  Detection of ice and organics on an asteroidal surface , 2010, Nature.

[27]  Julie Ziffer,et al.  Water ice and organics on the surface of the asteroid 24 Themis , 2010, Nature.

[28]  Michael F. A'Hearn,et al.  Photometric analysis of the nucleus of Comet 81P/Wild 2 from Stardust images , 2009 .

[29]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[30]  Paolo Tanga,et al.  Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.

[31]  T. Nakamura,et al.  STRENGTH MEASUREMENT OF CARBONACEOUS CHONDRITES AND MICROMETEORITES USING MICRO COMPRESSION TESTING MACHINE. A. Tsuchi , 2009 .

[32]  M. Shepard,et al.  Near-Earth asteroid surface roughness depends on compositional class , 2008 .

[33]  R. Gaskell,et al.  Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter , 2008 .

[34]  F. Velichko,et al.  Asteroid observations at low phase angles: III. Brightness behavior of dark asteroids , 2008 .

[35]  A. Nakamura,et al.  Size-frequency statistics of boulders on global surface of asteroid 25143 Itokawa , 2008 .

[36]  Petr Pravec,et al.  Binary asteroid population 1. Angular momentum content , 2007 .

[37]  Daniel J. Scheeres,et al.  Radar observations and a physical model of Asteroid 1580 Betulia , 2007 .

[38]  J. Mustard,et al.  Estimating Absolute H2O Content of Low-Albedo Materials Using Reflectance Spectroscopy , 2006 .

[39]  P. Brown,et al.  The fall and recovery of the Tagish Lake meteorite , 2006 .

[40]  M. A’Hearn,et al.  Photometric analysis of Eros from NEAR data , 2004 .

[41]  Daniel T. Britt,et al.  Stony meteorite porosities and densities: A review of the data through 2001 , 2003 .

[42]  G. Neukum,et al.  The Near-Earth Objects Follow-up Program. IV. CCD Photometry in 1996-1999 , 2002 .

[43]  J. Miller,et al.  Determination of Shape, Gravity, and Rotational State of Asteroid 433 Eros , 2002 .

[44]  P. Thomas,et al.  Impact History of Eros: Craters and Boulders , 2002 .

[45]  L. Benner,et al.  Radar constraints on asteroid regolith properties using 433 Eros as ground truth , 2001 .

[46]  Andrew F. Cheng,et al.  Small-Scale Topography of 433 Eros from Laser Altimetry and Imaging , 2000 .

[47]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[48]  Clark R. Chapman,et al.  NEAR Photometry of Asteroid 253 Mathilde , 1999 .

[49]  Clark R. Chapman,et al.  NEAR Encounter with Asteroid 253 Mathilde: Overview , 1999 .

[50]  Farquhar,et al.  Estimating the mass of asteroid 253 mathilde from tracking data during the NEAR flyby , 1997, Science.

[51]  E. Howell Probing asteroid composition using visible and near-infrared spectroscopy. , 1995 .

[52]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[53]  Robert W. Gaskell,et al.  Martian surface simulations , 1993 .

[54]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[55]  C. Pieters,et al.  Reflectance spectra of some fractions of Migei and Murchison SM chondrites in the range of 0.3-2.6 microns , 1991 .

[56]  Dorian G. W. Smith,et al.  Reflectance spectra of mafic silicate-opaque assemblages with applications to meteorite spectra , 1990 .

[57]  J. Veverka,et al.  Physical characterization of asteroid surfaces from photometric analysis , 1989 .

[58]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[59]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[60]  D. J. Tholen,et al.  The Eight-Color Asteroid Survey: Results for 589 Minor Planets , 1985 .

[61]  D. Tholen,et al.  Asteroid Taxonomy from Cluster Analysis of Photometry. , 1984 .

[62]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[63]  J. B. Tatum,et al.  Theory of Planetary Photometry , 1979 .

[64]  G. Simmons,et al.  The low-temperature electrical properties of carbonaceous meteorites , 1975 .

[65]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[66]  T. D. Moyer Mathematical formulation of the Double Precision Orbit Determination Program /DPODP/ , 1971 .

[67]  H. Seeliger Zur Photometrie des Saturnringes. , 1884 .