The future of ferroelectric field-effect transistor technology

[1]  S. Datta,et al.  Neuro-Mimetic Dynamics of a Ferroelectric FET-Based Spiking Neuron , 2019, IEEE Electron Device Letters.

[2]  Albert Chin,et al.  Low-Leakage-Current DRAM-Like Memory Using a One-Transistor Ferroelectric MOSFET With a Hf-Based Gate Dielectric , 2014, IEEE Electron Device Letters.

[3]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[4]  Takashi Ando,et al.  Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or Interfacial Layer Scavenging? , 2012, Materials.

[5]  C. Hu,et al.  Enhanced ferroelectricity in ultrathin films grown directly on silicon , 2020, Nature.

[6]  Arijit Raychowdhury,et al.  A Swarm Optimization Solver Based on Ferroelectric Spiking Neural Networks , 2019, Front. Neurosci..

[7]  B. Noheda,et al.  Magneto-ionic control of spin polarization in multiferroic tunnel junctions , 2019, npj Quantum Materials.

[8]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[9]  Yung-Hsien Wu,et al.  Ionizing Radiation Effect on Memory Characteristics for HfO2-Based Ferroelectric Field-Effect Transistors , 2019, IEEE Electron Device Letters.

[10]  T. Mikolajick,et al.  Atomic Structure of Domain and Interphase Boundaries in Ferroelectric HfO2 , 2017, 1709.08110.

[11]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[12]  Zheng Wang,et al.  Ferroelectric Oscillators and Their Coupled Networks , 2017, IEEE Electron Device Letters.

[13]  P. Polakowski,et al.  Local crystallographic phase detection and texture mapping in ferroelectric Zr doped HfO2 films by transmission-EBSD , 2019 .

[14]  Hugh P. McAdams,et al.  An FRAM-Based Nonvolatile Logic MCU SoC Exhibiting 100% Digital State Retention at ${\rm VDD}=$ 0 V Achieving Zero Leakage With ${<}$ 400-ns Wakeup Time for ULP Applications , 2014, IEEE Journal of Solid-State Circuits.

[15]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[16]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .

[17]  S. Gupta,et al.  Reconfigurable Ferroelectric Transistor—Part I: Device Design and Operation , 2019, IEEE Transactions on Electron Devices.

[18]  I. K. Yoo,et al.  Ferroelectric materials for neuromorphic computing , 2019, APL Materials.

[19]  P. Ye,et al.  A ferroelectric semiconductor field-effect transistor , 2018, Nature Electronics.

[20]  S. Slesazeck,et al.  The Past, the Present, and the Future of Ferroelectric Memories , 2020, IEEE Transactions on Electron Devices.

[21]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .

[22]  Gökmen Tayfun,et al.  Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations , 2016, Front. Neurosci..

[23]  Stochastic Resonance and Domain Switching , 2003 .

[24]  C. Hwang,et al.  Mitigating wakeup effect and improving endurance of ferroelectric HfO2-ZrO2 thin films by careful La-doping , 2019, Journal of Applied Physics.

[25]  Takashi Ito,et al.  A 24-MB Embedded Flash System Based on 28-nm SG-MONOS Featuring 240-MHz Read Operations and Robust Over-the-Air Software Update for Automotive Applications , 2019, IEEE Solid-State Circuits Letters.

[26]  Siddharth Joshi,et al.  Author Correction: Ferroelectric ternary content-addressable memory for one-shot learning , 2019, Nature Electronics.

[27]  A century of ferroelectricity. , 2020, Nature materials.

[28]  Byung Chul Jang,et al.  First Demonstration of a Logic-Process Compatible Junctionless Ferroelectric FinFET Synapse for Neuromorphic Applications , 2018, IEEE Electron Device Letters.

[29]  Stefan Slesazeck,et al.  Random Number Generation Based on Ferroelectric Switching , 2018, IEEE Electron Device Letters.

[30]  Shimeng Yu,et al.  Cryogenic characterization of a ferroelectric field-effect-transistor , 2020 .

[31]  Chenming Hu,et al.  Self-Aligned, Gate Last, FDSOI, Ferroelectric Gate Memory Device With 5.5-nm Hf0.8Zr0.2O2, High Endurance and Breakdown Recovery , 2017, IEEE Electron Device Letters.

[32]  Amit Kumar,et al.  Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching , 2013, Nature Physics.

[33]  S. Datta,et al.  Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance , 2018, IEEE Transactions on Electron Devices.

[34]  Ali Keshavarzi,et al.  Edge Intelligence—On the Challenging Road to a Trillion Smart Connected IoT Devices , 2019, IEEE Design & Test.

[35]  N. Endo,et al.  Ferroelectric field‐effect memory device using Bi4Ti3O12 film , 1975 .

[36]  Meng-Fan Chang,et al.  Enabling Energy-Efficient Nonvolatile Computing With Negative Capacitance FET , 2017, IEEE Transactions on Electron Devices.

[37]  Sayeef Salahuddin,et al.  Negative Capacitance Transistors , 2018, Proceedings of the IEEE.

[38]  Stefan Slesazeck,et al.  Accumulative Polarization Reversal in Nanoscale Ferroelectric Transistors. , 2018, ACS applied materials & interfaces.