Fuzzy-based adaptive sample-sort simulated annealing for resource-constrained project scheduling

This paper deals with the resource-constrained project scheduling problems (RCPSP), where the activities of a project have to be scheduled with the objective of minimizing the makespan subject to both temporal and resource constraints. Being one of the most intractable problems in the operations research area, RCPSP has often been a target and test bed for establishing new optimization tools and techniques. In order to efficiently solve this computationally complex problem in real time, we propose a parallel intelligent search technique named the fuzzy-based adaptive sample-sort simulated annealing (FASSA) heuristic. The basic ingredients of the proposed heuristic are the serial schedule generation scheme (SGS), sample-sort simulated annealing (SSA), and the fuzzy logic controller (FLC). The serial SGS generates the initial schedules following both the precedence and resource constraints. SSA is basically a serial simulated annealing algorithm, artificially extended across an array of samplers operating at statistically monotonically increasing temperatures. The FLC makes the SSA adaptive in nature by regulating the swapping rate of an activity’s priority during an improved schedule generation process. The implementation results of the FASSA heuristic over extremely hard test bed, adopted from the Project Scheduling Problem Library (PSPLIB), reveal its superiority over most of the currently existing approaches.

[1]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[2]  Alberto L. Sangiovanni-Vincentelli,et al.  A Parallel Simulated Annealing Algorithm for the Placement of Macro-Cells , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[4]  Francisco Ballestín,et al.  Resource-constrained project scheduling: A critical activity reordering heuristic , 2003, Eur. J. Oper. Res..

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[7]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[8]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[9]  A. J. Orman,et al.  On the Complexity of Coupled-task Scheduling , 1997, Discret. Appl. Math..

[10]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[11]  Kyung-Geun Lee,et al.  Synchronous and Asynchronous Parallel Simulated Annealing with Multiple Markov Chains , 1996, IEEE Trans. Parallel Distributed Syst..

[12]  Esin Onbasçioglu,et al.  Parallel Simulated Annealing Algorithms in Global Optimization , 2001, J. Glob. Optim..

[13]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[14]  Krzysztof Fleszar,et al.  An evolutionary algorithm for resource-constrained project scheduling , 2002, IEEE Trans. Evol. Comput..

[15]  E. W. Davis,et al.  Multiple Resource–Constrained Scheduling Using Branch and Bound , 1978 .

[16]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[17]  Arno Sprecher,et al.  Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements , 2000 .

[18]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[19]  K. Bouleimen,et al.  A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version , 2003, Eur. J. Oper. Res..

[20]  Francisco Ballestín,et al.  Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..

[21]  Robert Azencott,et al.  Simulated annealing : parallelization techniques , 1992 .

[22]  David E. Goldberg,et al.  Parallel Recombinative Simulated Annealing: A Genetic Algorithm , 1995, Parallel Comput..

[23]  Erik Demeulemeester,et al.  Resource-constrained project scheduling: A survey of recent developments , 1998, Comput. Oper. Res..

[24]  P. T. Wang,et al.  Speeding up the search process of genetic algorithm by fuzzy logic , 1997 .

[25]  Mark A. Franklin,et al.  Parallel Simulated Annealing using Speculative Computation , 1991, IEEE Trans. Parallel Distributed Syst..

[26]  Grzegorz Waligóra,et al.  Solving the discrete-continuous project scheduling problem via its discretization , 2000, Math. Methods Oper. Res..

[27]  G. S. Vukovich,et al.  Fuzzy evolutionary algorithms and automatic robot trajectory generation , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[28]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[29]  Alessandro Bevilacqua,et al.  A Methodological Approach to Parallel Simulated Annealing on an SMP System , 2002, J. Parallel Distributed Comput..

[30]  Mitsuo Gen,et al.  Advanced scheduling problem using constraint programming techniques in SCM environment , 2002 .

[31]  Robert Klein,et al.  Bidirectional planning: improving priority rule-based heuristics for scheduling resource-constrained projects , 2000, Eur. J. Oper. Res..

[32]  Griff L. Bilbro,et al.  Sample-sort simulated annealing , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[33]  Rema Padman,et al.  An integrated survey of deterministic project scheduling , 2001 .

[34]  Markus W. Schäffter,et al.  Scheduling with Forbidden Sets , 1997, Discret. Appl. Math..

[35]  Derek Pao,et al.  Parallel implementation of simulated annealing using transaction processing , 1999 .

[36]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[37]  Albert Y. Zomaya,et al.  A Parallel Simulated Annealing Algorithm with Low Communication Overhead , 1995, IEEE Trans. Parallel Distributed Syst..

[38]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[39]  Krzysztof Fleszar,et al.  Solving the resource-constrained project scheduling problem by a variable neighbourhood search , 2004, Eur. J. Oper. Res..

[40]  Rainer Kolisch,et al.  PSPLIB - a project scheduling problem library , 1996 .