Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices

The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.

[1]  J. Suehle,et al.  Band offsets of Al2O3/InxGa1−xAs (x=0.53 and 0.75) and the effects of postdeposition annealing , 2010 .

[2]  D. Vanderbilt,et al.  Valence and conduction band offsets of a ZrO2/SiOxNy/n‐Si CMOS gate stack: A combined photoemission and inverse photoemission study , 2004 .

[3]  M. Houssa High k Gate Dielectrics , 2003 .

[4]  M. Shiojiri,et al.  Fabrication of ZnO Nanopillars by Atomic Layer Deposition , 2010 .

[6]  G. Wurtz,et al.  Plasmonic nanorod metamaterials for biosensing. , 2009, Nature materials.

[7]  B. Thibeault,et al.  High Dielectric Constant ZrO2 Films by Atomic Layer Deposition Technique on Germanium Substrates , 2016, Silicon.

[8]  Wilfried Vandervorst,et al.  Island growth in the atomic layer deposition of zirconium oxide and aluminum oxide on hydrogen-terminated silicon: Growth mode modeling and transmission electron microscopy , 2004 .

[9]  Nazek El-Atab,et al.  ~3-nm ZnO Nanoislands Deposition and Application in Charge Trapping Memory Grown by Single ALD Step , 2016, Scientific Reports.

[10]  Eric Garfunkel,et al.  Band offsets of ultrathin high- κ oxide films with Si , 2008 .

[11]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[12]  Diing Shenp Ang,et al.  Interfacial chemistry and valence band offset between GaN and Al2O3 studied by X-ray photoelectron spectroscopy , 2013 .

[13]  Steven M. George,et al.  Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates , 2002 .

[14]  H. Le Ferrand,et al.  Magnetically assisted slip casting of bioinspired heterogeneous composites. , 2015, Nature materials.

[15]  Chan Beum Park,et al.  Highly Photoactive, Low Bandgap TiO2 Nanoparticles Wrapped by Graphene , 2012, Advanced materials.

[16]  James M Tour,et al.  Electronic two-terminal bistable graphitic memories. , 2008, Nature materials.

[17]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[18]  Bo-Kuai Lai,et al.  Scalable nanostructured membranes for solid-oxide fuel cells. , 2011, Nature nanotechnology.

[19]  C. Thompson,et al.  Tensile stress evolution during deposition of Volmer–Weber thin films , 2000 .

[20]  A. Gibaud,et al.  Substrate-induced modulation of the Raman scattering signals from self-assembled organic nanometric films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  Nazek El-Atab,et al.  Transparent Graphene Nanoplatelets for Charge Storage in Memory Devices , 2014 .

[22]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[23]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[24]  T. Pollock,et al.  Alloy design for aircraft engines. , 2016, Nature materials.

[25]  John B. Hudson,et al.  Surface Science: An Introduction , 1991 .

[26]  Z. Ren,et al.  Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. , 2014, Nature nanotechnology.

[27]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[28]  Tao Yu,et al.  Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles , 2007 .

[29]  Nazek El-Atab,et al.  Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer , 2014 .

[30]  M. Mokhtar,et al.  Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange , 2015, Nanoscale Research Letters.

[31]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[32]  Shih-Chieh Teng,et al.  Toward Low-Power Flash Memory: Prospect of Adopting Crystalline Oxide as Charge Trapping Layer , 2016, IEEE Journal of the Electron Devices Society.

[33]  S. Alkis,et al.  Memory effect by charging of ultra‐small 2‐nm laser‐synthesized solution processable Si‐nanoparticles embedded in Si–Al2O3–SiO2 structure , 2015 .

[34]  S. Alkis,et al.  Low Power Zinc-Oxide Based Charge Trapping Memory with Embedded Silicon Nanoparticles , 2014 .

[35]  Yi Cui,et al.  Metamaterial mirrors in optoelectronic devices. , 2014, Nature nanotechnology.

[36]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[37]  Nazek El-Atab,et al.  1D versus 3D quantum confinement in 1–5 nm ZnO nanoparticle agglomerations for application in charge-trapping memory devices , 2016, Nanotechnology.

[38]  C. Thompson,et al.  Reversible stress relaxation during precoalescence interruptions of volmer-weber thin film growth. , 2002, Physical review letters.

[39]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[40]  Noh-Jung Kwak,et al.  Development of New TiN/ZrO2/Al2O3/ZrO2/TiN Capacitors Extendable to 45nm Generation DRAMs Replacing HfO2 Based Dielectrics , 2006, 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers..

[41]  David Vanderbilt,et al.  Phonons and lattice dielectric properties of zirconia , 2001, cond-mat/0108491.

[42]  Colm O'Dwyer,et al.  Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. , 2009, Nature nanotechnology.

[43]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .