Synthesis of Supervised Approaches for Intrusion Detection Systems

[1]  Johannes Fürnkranz,et al.  Pruning Algorithms for Rule Learning , 1997, Machine Learning.

[2]  Richard A. Kemmerer,et al.  State Transition Analysis: A Rule-Based Intrusion Detection Approach , 1995, IEEE Trans. Software Eng..

[3]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[4]  Donato Malerba,et al.  A Comparative Analysis of Methods for Pruning Decision Trees , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Reda Mohamed Hamou,et al.  A New Biomimetic Approach Based on Social Spiders for Clustering of Text , 2012, SERA.

[6]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[7]  Nir Friedman,et al.  Building Classifiers Using Bayesian Networks , 1996, AAAI/IAAI, Vol. 2.

[8]  Usama M. Fayyad,et al.  On the Handling of Continuous-Valued Attributes in Decision Tree Generation , 1992, Machine Learning.

[9]  Amine Boudia,et al.  A New Meta-Heuristic Based on Social Bees for Detection and Filtering of Spam , 2013, Int. J. Appl. Metaheuristic Comput..

[10]  Reda Mohamed Hamou,et al.  Detecting Opinions in Tweets , 2014, ArXiv.

[11]  Hamou Reda Mohamed,et al.  Representation of Textual Documents by the Approach Wordnet and N-grams for the Unsupervised Classification (Clustering) with 2D Cellular Automata: A Comparative Study , 2010 .

[12]  Marc Dacier,et al.  Towards a taxonomy of intrusion-detection systems , 1999, Comput. Networks.