Drawing planar partitions III: Two constrained embedding problems

In two previous papers, we studied the following problem: Given a planar graph G = (V; E) and a partition V = A B of the vertices. Can we draw G without crossing such that the partition is clearly visible? For three models used to display the partition, we developed necessary and suucient conditions for the existence of such a drawing. The time to test these conditions was dominated by verifying whether there exists a planar embedding of G that satisses certain additional properties. In this paper, we study how these constrained embedding tests can be done in linear time.

[1]  M. Chrobak,et al.  Convex Grid Drawings of 3-Connected Planar Graphs , 1997, Int. J. Comput. Geom. Appl..

[2]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[3]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[4]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[5]  Brendan D. McKay,et al.  On an edge crossing problem , 1986 .

[6]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[7]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[8]  Therese C. Biedl Drawing planar partitions I: LL-drawings and LH-drawings , 1998, SCG '98.

[9]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[10]  Michael Kaufmann,et al.  Drawing Planar Partitions II: HH-Drawings , 1998, WG.

[11]  I. G. BONNER CLAPPISON Editor , 1960, The Electric Power Engineering Handbook - Five Volume Set.

[12]  Michael Kaufmann,et al.  Nice Drawings for Planar Bipartite Graphs , 1997, CIAC.

[13]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, Algorithmica.

[14]  Clyde L. Monma,et al.  On the Complexity of Covering Vertices by Faces in a Planar Graph , 1988, SIAM J. Comput..

[15]  Goos Kant,et al.  On Triangulating Planar Graphs under the Four-Connectivity Constraint , 1994, SWAT.