Modulation of concentration fluctuations in phase-separated lipid membranes by polypeptide insertion.

[1]  R. Epand,et al.  Regulation of CTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. , 2001, Biochemistry.

[2]  F. Cornelius Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics. , 2001, Biochemistry.

[3]  A. Hinderliter,et al.  Domain formation in a fluid mixed lipid bilayer modulated through binding of the C2 protein motif. , 2001, Biochemistry.

[4]  J H Crowe,et al.  Lateral organization and domain formation in a two-component lipid membrane system. , 2001, Biophysical journal.

[5]  J. Lundbaek,et al.  Gramicidin and Related Ion channel-Forming Peptides , 2000 .

[6]  K. Jørgensen,et al.  Nonequilibrium Lipid Domain Growth in the Gel−Fluid Two-Phase Region of a DC16PC−DC22PC Lipid Mixture Investigated by Monte Carlo Computer Simulation, FT-IR, and Fluorescence Spectroscopy , 2000 .

[7]  E Gratton,et al.  A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. , 2000, Biophysical journal.

[8]  T. Bjørnholm,et al.  Nanometre-scale structure of fluid lipid membranes , 2000 .

[9]  P. Pfeifer,et al.  Power-law fluctuations in phase-separated lipid membranes. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  E Gratton,et al.  Two-photon fluorescence microscopy observation of shape changes at the phase transition in phospholipid giant unilamellar vesicles. , 1999, Biophysical journal.

[11]  T. Cross,et al.  Validation of the single-stranded channel conformation of gramicidin A by solid-state NMR. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Templer,et al.  Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer. , 1999, Biochemistry.

[13]  T. Weiss,et al.  Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[14]  T. E. Thompson,et al.  Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. , 1999, Biophysical journal.

[15]  L. Yang,et al.  Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. , 1999, Biophysical journal.

[16]  M. Sperotto,et al.  Theoretical analysis of protein organization in lipid membranes. , 1998, Biochimica et biophysica acta.

[17]  P. Quist 13C solid-state NMR of gramicidin A in a lipid membrane. , 1998, Biophysical journal.

[18]  H. Clausen‐Schaumann,et al.  Direct detection of domains in phospholipid bilayers by grazing incidence diffraction of neutrons and atomic force microscopy. , 1998, Biophysical journal.

[19]  D. Engelman,et al.  Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. , 1997, Journal of Molecular Biology.

[20]  O. G. Mouritsen,et al.  Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers. , 1997, Biophysical journal.

[21]  E. Gratton,et al.  Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. , 1997, Biophysical journal.

[22]  T. E. Thompson,et al.  Influence of the intrinsic membrane protein bacteriorhodopsin on gel-phase domain topology in two-component phase-separated bilayers. , 1997, Biophysical journal.

[23]  C. Czeslik,et al.  Lateral organization of binary-lipid membranes—Evidence for fractal-like behaviour in the gel-fluid coexistence region , 1997 .

[24]  E Gratton,et al.  Fluorescence generalized polarization of cell membranes: a two-photon scanning microscopy approach. , 1996, Biophysical journal.

[25]  O. G. Mouritsen,et al.  Phase separation dynamics and lateral organization of two-component lipid membranes. , 1995, Biophysical journal.

[26]  Enrico Gratton,et al.  Time-resolved fluorescence microscopy using two-photon excitation , 1995 .

[27]  W. Knoll,et al.  Lateral order in binary lipid alloys and its coupling to membrane functions. , 1994, Chemistry and physics of lipids.

[28]  R. Winter,et al.  High-pressure differential thermal analysis of lamellar to lamellar and lamellar to non-lamellar lipid phase transitions , 1994 .

[29]  M. Auger,et al.  Solvent history dependence of gramicidin-lipid interactions: a Raman and infrared spectroscopic study. , 1993, Biophysical journal.

[30]  M. Sperotto,et al.  Phase equilibria and local structure in binary lipid bilayers. , 1993, Biochimica et biophysica acta.

[31]  T. Cross,et al.  High-resolution structure and dynamic implications for a double-helical gramicidin A conformer , 1993, Journal of biomolecular NMR.

[32]  J. Killian Gramicidin and gramicidin-lipid interactions. , 1992, Biochimica et biophysica acta.

[33]  T. E. Thompson,et al.  Deuterium magnetic resonance study of phase equilibria and membrane thickness in binary phospholipid mixed bilayers. , 1992, Biochemistry.

[34]  J. Bandekar,et al.  Amide modes and protein conformation. , 1992, Biochimica et biophysica acta.

[35]  D. Langs,et al.  Monoclinic uncomplexed double-stranded, antiparallel, left-handed beta 5.6-helix (increases decreases beta 5.6) structure of gramicidin A: alternate patterns of helical association and deformation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. E. Thompson,et al.  Fluid-phase connectivity and translational diffusion in a eutectic, two-component, two-phase phosphatidylcholine bilayer. , 1991, Biochemistry.

[37]  R. Srinivasan,et al.  The phase diagram of dimyristoyl phosphatidylcholine and chain-perdeuterated distearoyl phosphatidylcholine A deuterium NMR spectral difference study , 1991 .

[38]  T. Cosgrove,et al.  The fractal approach to heterogeneous chemistry. surface, colloids, polymers : edited by D. Avnir, John Wiley and Sons, New York, 1989, pp. 441, ISBN 0-471-91723-0 , 1990 .

[39]  J. M. Cook,et al.  The fractal approach to heterogeneous chemistry , 1990 .

[40]  B. Cornell,et al.  Effect of acyl chain length on the structure and motion of gramicidin A in lipid bilayers. , 1989, Biochimica et biophysica acta.

[41]  V. Naik,et al.  Vibrational analysis of the structure of gramicidin A. I. Normal mode analysis. , 1986, Biophysical journal.

[42]  V. Naik,et al.  Vibrational analysis of the structure of gramicidin A. II. Vibrational spectra. , 1986, Biophysical journal.

[43]  H. Susi,et al.  Examination of the secondary structure of proteins by deconvolved FTIR spectra , 1986, Biopolymers.

[44]  Y. Ovchinnikov,et al.  1H‐NMR study of gramicidin A transmembrane ion channel , 1985, FEBS letters.

[45]  W. Knoll,et al.  Critical demixing in fluid bilayers of phospholipid mixtures. A neutron diffraction study , 1983 .

[46]  W. Knoll,et al.  Small-angle neutron scattering study of lipid phase diagrams by the contrast variation method. , 1981, Biochemistry.

[47]  J M Sturtevant,et al.  Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[48]  E. Blout,et al.  The conformation of gramicidin A. , 1974, Biochemistry.

[49]  B. Witkop,et al.  GRAMICIDIN A. V. THE STRUCTURE OF VALINE- AND ISOLEUCINE-GRAMICIDIN A. , 1965, Journal of the American Chemical Society.

[50]  V. Ivanov,et al.  The double ππ5.6 helix of gramicidin a predominates in unsaturated lipid membranes , 2004, European Biophysics Journal.

[51]  R. Winter,et al.  Effect of temperature, pressure and lipid acyl chain length on the structure and phase behaviour of phospholipid–gramicidin bilayers , 2000 .

[52]  E Gratton,et al.  Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. , 2000, Biophysical journal.

[53]  S. May,et al.  A molecular model for lipid-mediated interaction between proteins in membranes , 2000 .

[54]  H. Möhwald,et al.  Influence of model membrane structure on phospholipase D activity. , 2000 .

[55]  W. Pangborn,et al.  Gramicidin D conformation, dynamics and membrane ion transport. , 1999, Biopolymers.

[56]  Gail Cardew,et al.  Gramicidin and related ion channel-forming peptides , 1999 .

[57]  B. Wallace,et al.  Recent Advances in the High Resolution Structures of Bacterial Channels: Gramicidin A. , 1998, Journal of structural biology.

[58]  T. Cross Solid-state nuclear magnetic resonance characterization of gramicidin channel structure. , 1997, Methods in enzymology.

[59]  R. Koeppe,et al.  Engineering the gramicidin channel. , 1996, Annual review of biophysics and biomolecular structure.

[60]  H. Brumberger Modern aspects of small-angle scattering , 1995 .

[61]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[62]  M. Angelova,et al.  Preparation of giant vesicles by external AC electric fields. Kinetics and applications , 1992 .

[63]  B. Wallace,et al.  Gramicidin channels and pores. , 1990, Annual review of biophysics and biophysical chemistry.

[64]  David Avnir,et al.  The Fractal approach to heterogeneous chemistry : surfaces, colloids, polymers , 1989 .

[65]  B. Cornell,et al.  Conformation and orientation of gramicidin a in oriented phospholipid bilayers measured by solid state carbon-13 NMR. , 1988, Biophysical journal.

[66]  M. Angelova,et al.  Lipid swelling and liposome formation on solid surfaces in external electric fields , 1987 .

[67]  B. Wallace Structure of gramicidin A. , 1986, Biophysical journal.

[68]  D. Urry The gramicidin A transmembrane channel: a proposed pi(L,D) helix. , 1971, Proceedings of the National Academy of Sciences of the United States of America.