Efficient Regret Minimization in Non-Convex Games

We consider regret minimization in repeated games with non-convex loss functions. Minimizing the standard notion of regret is computationally intractable. Thus, we define a natural notion of regret which permits efficient optimization and generalizes offline guarantees for convergence to an approximate local optimum. We give gradient-based methods that achieve optimal regret, which in turn guarantee convergence to equilibrium in this framework.

[1]  Vladimir Vovk,et al.  Aggregating strategies , 1990, COLT '90.

[2]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[3]  T. Cover Universal Portfolios , 1996 .

[4]  S. Hart,et al.  A simple adaptive procedure leading to correlated equilibrium , 2000 .

[5]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[6]  Yurii Nesterov,et al.  Cubic regularization of Newton method and its global performance , 2006, Math. Program..

[7]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[8]  Elad Hazan,et al.  Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria , 2007, NIPS.

[9]  Yishay Mansour,et al.  From External to Internal Regret , 2005, J. Mach. Learn. Res..

[10]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[11]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[12]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[13]  Saeed Ghadimi,et al.  Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming , 2013, SIAM J. Optim..

[14]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[15]  Andrea Montanari,et al.  Convergence rates of sub-sampled Newton methods , 2015, NIPS.

[16]  David Pfau,et al.  Connecting Generative Adversarial Networks and Actor-Critic Methods , 2016, ArXiv.

[17]  Yair Carmon,et al.  Accelerated Methods for Non-Convex Optimization , 2016, SIAM J. Optim..

[18]  Zeyuan Allen Zhu,et al.  Variance Reduction for Faster Non-Convex Optimization , 2016, ICML.

[19]  Tengyu Ma,et al.  Finding Approximate Local Minima for Nonconvex Optimization in Linear Time , 2016, ArXiv.

[20]  Elad Hazan,et al.  Introduction to Online Convex Optimization , 2016, Found. Trends Optim..

[21]  David Pfau,et al.  Unrolled Generative Adversarial Networks , 2016, ICLR.

[22]  Naman Agarwal,et al.  Second-Order Stochastic Optimization for Machine Learning in Linear Time , 2016, J. Mach. Learn. Res..

[23]  Tengyu Ma,et al.  Finding approximate local minima faster than gradient descent , 2016, STOC.