High order splitting schemes with complex timesteps and their application in mathematical finance

High order splitting schemes with complex timesteps are applied to Kolmogorov backward equations stemming from stochastic differential equations in the Stratonovich form. In the setting of weighted spaces, the necessary analyticity of the split semigroups can easily be proved. A numerical example from interest rate theory, the CIR2 model, is considered. The numerical results are robust for drift-dominated problems and confirm our theoretical results.

[1]  Jens Markus Melenk,et al.  The hp-version of the streamline diffusion finite element method in two space dimensions , 1999 .

[2]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[3]  C. Schwab,et al.  hp-DGFEM FOR KOLMOGOROV–FOKKER–PLANCK EQUATIONS OF MULTIVARIATE LÉVY PROCESSES , 2012 .

[4]  D. Brigo,et al.  Interest Rate Models , 2001 .

[5]  A. Ostermann,et al.  High order splitting methods for analytic semigroups exist , 2009 .

[6]  S. Ninomiya,et al.  Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing , 2006, math/0605361.

[7]  Paul M. N. Feehan,et al.  Existence, uniqueness, and global regularity for degenerate elliptic obstacle problems in mathematical finance , 2011, 1109.1075.

[8]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[9]  Aurélien Alfonsi,et al.  Exact and high order discretization schemes for Wishart processes and their affine extensions , 2013 .

[10]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[11]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[12]  Christian Kahl,et al.  Simulation of Square‐Root Processes , 2010 .

[13]  G. Choe Numerical Solution of Stochastic Differential Equations , 2016 .

[14]  T. Björk Arbitrage Theory in Continuous Time , 2019 .

[15]  Philipp Dörsek,et al.  Semigroup Splitting and Cubature Approximations for the Stochastic Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[16]  Josef Teichmann,et al.  Efficient Simulation and Calibration of General HJM Models by Splitting Schemes , 2011, SIAM J. Financial Math..

[17]  Jens Markus Melenk,et al.  The hp streamline diffusion finite element method for convection dominated problems in one space dimension , 1998 .

[18]  M. Rockner,et al.  Kolmogorov equations in infinite dimensions: Well-posedness and regularity of solutions, with applications to stochastic generalized Burgers equations , 2005, math/0511708.

[19]  Eduardo S. Schwartz,et al.  Interest Rate Volatility and the Term Structure: A Two-Factor General Equilibrium Model , 1992 .

[20]  Stéphane Descombes,et al.  Splitting methods with complex times for parabolic equations , 2009 .

[21]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[22]  J. Teichmann,et al.  Cubature methods for stochastic (partial) differential equations in weighted spaces , 2012, 1201.4024.

[23]  S. Shreve Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .

[24]  Philipp Doersek,et al.  A Semigroup Point Of View On Splitting Schemes For Stochastic (Partial) Differential Equations , 2010, 1011.2651.

[25]  Dominik Schötzau,et al.  hp-DGFEM for parabolic evolution problems , 1999 .

[26]  D. H. Sharp,et al.  Numerical Methods for Stochastic Partial Differential Equations , 1999 .

[27]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[28]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[29]  H. Kunita Stochastic differential equations and stochastic flows of diffeomorphisms , 1984 .

[30]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[31]  Volker Grimm Resolvent Krylov subspace approximation to operator functions , 2012 .

[32]  P. Feehan,et al.  C^{1,1} regularity for degenerate elliptic obstacle problems , 2012, 1206.0831.

[33]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[34]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[35]  Fernando Casas,et al.  On the necessity of negative coefficients for operator splitting schemes of order higher than two , 2005 .

[36]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[37]  Alexander Ostermann,et al.  Exponential splitting for unbounded operators , 2009, Math. Comput..

[38]  Dominik Schötzau,et al.  Time Discretization of Parabolic Problems by the HP-Version of the Discontinuous Galerkin Finite Element Method , 2000, SIAM J. Numer. Anal..