Change-Point Detection for High-Dimensional Time Series With Missing Data

This paper describes a novel approach to change-point detection when the observed high-dimensional data may have missing elements. The performance of classical methods for change-point detection typically scales poorly with the dimensionality of the data, so that a large number of observations are collected after the true change-point before it can be reliably detected. Furthermore, missing components in the observed data handicap conventional approaches. The proposed method addresses these challenges by modeling the dynamic distribution underlying the data as lying close to a time-varying low-dimensional submanifold embedded within the ambient observation space. Specifically, streaming data is used to track a submanifold approximation, measure deviations from this approximation, and calculate a series of statistics of the deviations for detecting when the underlying manifold has changed in a sharp or unexpected manner. The approach described in this paper leverages several recent results in the field of high-dimensional data analysis, including subspace tracking with missing data, multiscale analysis techniques for point clouds, online optimization, and change-point detection performance analysis. Simulations and experiments highlight the robustness and efficacy of the proposed approach in detecting an abrupt change in an otherwise slowly varying low-dimensional manifold.

[1]  A. B. Tsybakov,et al.  Linear and Convex Aggregation of Density Estimators Ph , 2007 .

[2]  Alexander G. Tartakovsky,et al.  Nearly Optimal Change-Point Detection with an Application to Cybersecurity , 2012, 1202.2849.

[3]  G. Lorden PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION , 1971 .

[4]  Nuno Vasconcelos,et al.  Anomaly detection in crowded scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  David J. Kriegman,et al.  Online learning of probabilistic appearance manifolds for video-based recognition and tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Justus H. Piater,et al.  Online Learning of Gaussian Mixture Models - a Two-Level Approach , 2008, VISAPP.

[7]  Haimin Wang,et al.  Automatic Solar Filament Detection Using Image Processing Techniques , 2005 .

[8]  Mark Crovella,et al.  Diagnosing network-wide traffic anomalies , 2004, SIGCOMM '04.

[9]  Ron Meir,et al.  Nonparametric Time Series Prediction Through Adaptive Model Selection , 2000, Machine Learning.

[10]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[11]  Roummel F. Marcia,et al.  Sequential Anomaly Detection in the Presence of Noise and Limited Feedback , 2009, IEEE Transactions on Information Theory.

[12]  A. Robert Calderbank,et al.  PETRELS: Parallel Estimation and Tracking of Subspace by Recursive Least Squares from Partial Observations , 2012, ArXiv.

[13]  D. Siegmund,et al.  Sequential Detection of a Change in a Normal Mean when the Initial Value is Unknown , 1991 .

[14]  M. Maggioni,et al.  Multi-scale geometric methods for data sets II: Geometric Multi-Resolution Analysis , 2012 .

[15]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[16]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[17]  Alexander G. Gray,et al.  CAKE: Convex Adaptive Kernel Density Estimation , 2011, AISTATS.

[18]  M. Wakin Manifold-Based Signal Recovery and Parameter Estimation from Compressive Measurements , 2010, 1002.1247.

[19]  S. W. Roberts A Comparison of Some Control Chart Procedures , 1966 .

[20]  David J. Marchette,et al.  Adaptive mixture density estimation , 1993, Pattern Recognit..

[21]  Alfred O. Hero,et al.  Manifold learning visualization of network traffic data , 2005, MineNet '05.

[22]  A. Tsybakov,et al.  Linear and convex aggregation of density estimators , 2006, math/0605292.

[23]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[24]  Kenneth Kennedy,et al.  Using semi-supervised classifiers for credit scoring , 2013, J. Oper. Res. Soc..

[25]  Liqing Zhang,et al.  Saliency Detection: A Spectral Residual Approach , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  P. Deb Finite Mixture Models , 2008 .

[27]  Pascal Frossard,et al.  Tangent-based manifold approximation with locally linear models , 2012, Signal Process..

[28]  A. Barron,et al.  Estimation of mixture models , 1999 .

[29]  J. Kappenman,et al.  A perfect storm of planetary proportions , 2012, IEEE Spectrum.

[30]  Ambuj Tewari,et al.  Learning Exponential Families in High-Dimensions: Strong Convexity and Sparsity , 2009, AISTATS.

[31]  Mikhail Belkin,et al.  Problems of learning on manifolds , 2003 .

[32]  Carey E. Priebe,et al.  Anomaly Detection in Time Series of Graphs using Fusion of Graph Invariants , 2012, IEEE Journal of Selected Topics in Signal Processing.

[33]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[34]  Karim Abed-Meraim,et al.  On a Class of Orthonormal Algorithms for Principal and Minor Subspace Tracking , 2002, J. VLSI Signal Process..

[35]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .

[36]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[37]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[38]  Danijel Skocaj,et al.  Online kernel density estimation for interactive learning , 2010, Image Vis. Comput..

[39]  Anukool Lakhina,et al.  Multivariate Online Anomaly Detection Using Kernel Recursive Least Squares , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[40]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[41]  D. Donoho CART AND BEST-ORTHO-BASIS: A CONNECTION' , 1997 .

[42]  Peyman Milanfar,et al.  Static and space-time visual saliency detection by self-resemblance. , 2009, Journal of vision.

[43]  M. Pollak Optimal Detection of a Change in Distribution , 1985 .

[44]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[45]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[46]  Alexandre d'Aspremont,et al.  First-Order Methods for Sparse Covariance Selection , 2006, SIAM J. Matrix Anal. Appl..

[47]  Robert D. Nowak,et al.  Multiscale Poisson Intensity and Density Estimation , 2007, IEEE Transactions on Information Theory.

[48]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[49]  David Siegmund,et al.  Sequential multi-sensor change-point detection , 2013, 2013 Information Theory and Applications Workshop (ITA).

[50]  J. Lafferty,et al.  Rodeo: Sparse, greedy nonparametric regression , 2008, 0803.1709.

[51]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[52]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.

[53]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[54]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[55]  Robert D. Nowak,et al.  High-dimensional Matched Subspace Detection when data are missing , 2010, 2010 IEEE International Symposium on Information Theory.

[56]  Danijel Skocaj,et al.  Multivariate online kernel density estimation with Gaussian kernels , 2011, Pattern Recognit..

[57]  A. Robert Calderbank,et al.  PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations , 2012, IEEE Transactions on Signal Processing.

[58]  Aleksey S. Polunchenko,et al.  State-of-the-Art in Sequential Change-Point Detection , 2011, 1109.2938.

[59]  A. Robert Calderbank,et al.  PETRELS: Subspace estimation and tracking from partial observations , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[60]  Sergio VerdÂ,et al.  The Minimum Description Length Principle in Coding and Modeling , 2000 .

[61]  Alfred O. Hero,et al.  Geodesic entropic graphs for dimension and entropy estimation in manifold learning , 2004, IEEE Transactions on Signal Processing.