A skew-normal dynamic linear model and Bayesian forecasting

Dynamic linear models are typically developed assuming that both the observational and system distributions are normal. In this work, we relax this assumption by considering a skew-normal distribution for the observational random errors, providing thus an extension of the standard normal dynamic linear model. Full Bayesian inference is carried out using the hierarchical representation of the model. The inference scheme is led by means of the adaptation of the Forward Filtering Backward sampling and the usual MCMC algorithms to perform the inference. The proposed methodology is illustrated by a simulation study and applied to the condition factor index of male and female anchovies off northern Chile. These indexes have not been studied in a dynamic linear model framework.

[1]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[2]  M. Genton,et al.  Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis , 2008 .

[3]  M. Genton,et al.  On fundamental skew distributions , 2005 .

[4]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[5]  R. Kalman,et al.  New results in linear prediction and filtering theory Trans. AMSE , 1961 .

[6]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[7]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[8]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[9]  Javier E. Contreras-Reyes Analyzing Fish Condition Factor Index Through Skew-Gaussian Information Theory Quantifiers , 2016 .

[10]  Javad Rezaie,et al.  Kalman filter variants in the closed skew normal setting , 2014, Comput. Stat. Data Anal..

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  Wei Ning,et al.  On Some Properties of the Unified Skew Normal Distribution , 2013 .

[13]  H. Akaike A new look at the statistical model identification , 1974 .

[14]  E. Cren,et al.  THE LENGTH-WEIGHT RELATIONSHIP AND SEASONAL CYCLE IN GONAD WEIGHT AND CONDITION IN THE PERCH , 2022 .

[15]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[16]  Reinaldo Boris Arellano-Valle,et al.  Generalized Skew-Normal Negentropy and Its Application to Fish Condition Factor Time Series , 2017, Entropy.

[17]  Helio S. Migon,et al.  A dynamic linear model with extended skew-normal for the initial distribution of the state parameter , 2014, Comput. Stat. Data Anal..

[18]  L. Fahrmeir Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .

[19]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[20]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[21]  Dani Gamerman,et al.  Multivariate spatial regression models , 2002 .

[22]  Javad Rezaie,et al.  A skewed unscented Kalman filter , 2016, Int. J. Control.

[23]  Bani K. Mallick,et al.  Mixtures of skewed Kalman filters , 2014, J. Multivar. Anal..

[24]  R. Arellano-Valle,et al.  On the Unification of Families of Skew‐normal Distributions , 2006 .

[25]  M. Plummer,et al.  CODA: convergence diagnosis and output analysis for MCMC , 2006 .

[26]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[27]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[28]  M. Genton,et al.  A skewed Kalman filter , 2005 .

[29]  Javier E. Contreras-Reyes,et al.  Influence of climate variability on anchovy reproductive timing off northern Chile , 2016 .

[30]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .

[31]  Alan E. Gelfand,et al.  Model choice: A minimum posterior predictive loss approach , 1998, AISTATS.