Recent developments in membraneless electrolysis

[1]  M. Modestino,et al.  Understanding Bubble-Induced Overpotential Losses in Multiphase Flow Electrochemical Reactors , 2022, Energy & Fuels.

[2]  V. Solovey,et al.  Researching and adjusting the modes of joint operation of a photoelectric converter and a high pressure electrolyzer , 2022, International Journal of Hydrogen Energy.

[3]  D. Brett,et al.  Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting (DSS) , 2022, Green Energy & Environment.

[4]  M. El‐Naas,et al.  Magnesium recovery from desalination reject brine as pretreatment for membraneless electrolysis , 2022, Desalination.

[5]  A. Manzotti,et al.  Membraneless electrolyzers for the production of low-cost, high-purity green hydrogen: A techno-economic analysis , 2022, Energy Conversion and Management.

[6]  S. Basu,et al.  Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application , 2022, Applied Energy.

[7]  Jeremy T. Feaster,et al.  Comparative Techno-Economic and Life Cycle Analysis of Water Oxidation and Hydrogen Oxidation at the Anode in a CO2 Electrolysis to Ethylene System , 2021, ACS Sustainable Chemistry & Engineering.

[8]  S. Basu,et al.  Microfabrication of the Ammonia Plasma-Activated Nickel Nitride–Nickel Thin Film for Overall Water Splitting in the Microfluidic Membraneless Electrolyzer , 2021, ACS Applied Energy Materials.

[9]  G. Rothenberg,et al.  A membrane-free flow electrolyzer operating at high current density using earth-abundant catalysts for water splitting , 2021, Nature Communications.

[10]  M. I. Gillespie,et al.  On the electrocatalytic symbiotic synergism between Pt, Ni and Al in plasma vapour deposited PtxNiyAlz thin metal films for water electrolysis , 2021 .

[11]  J. C. Serrano-Ruiz,et al.  Membrane-Less Ethanol Electrooxidation over Pd-M (M: Sn, Mo and Re) Bimetallic Catalysts , 2021, Catalysts.

[12]  J. Haverkort,et al.  Design of membraneless gas-evolving flow-through porous electrodes , 2021, Journal of Power Sources.

[13]  D. Psaltis,et al.  A membrane-less electrolyzer with porous walls for high throughput and pure hydrogen production , 2021, Sustainable energy & fuels.

[14]  F. Abdi,et al.  Multiphase fluid dynamics simulations of product crossover in solar-driven, membrane-less water splitting , 2021 .

[15]  T. Mandal,et al.  Graphite/RGO coated paper μ-electrolyzers for production and separation of hydrogen and oxygen , 2021 .

[16]  Zhiqiang Xie,et al.  A simple convertible electrolyzer in membraneless and membrane-based modes for understanding water splitting mechanism , 2021 .

[17]  N. T. Khiem,et al.  Development of high pressure membraneless alkaline electrolyzer , 2021 .

[18]  G. Sant,et al.  Saline Water-Based Mineralization Pathway for Gigatonne-Scale CO2 Management , 2021 .

[19]  S. Basu,et al.  An electrochemical neutralization energy-assisted membrane-less microfluidic reactor for water electrolysis , 2020, Sustainable Energy & Fuels.

[20]  F. Jiao,et al.  Flow Electrolyzer Mass Spectrometry with a Gas Diffusion Electrode Design. , 2020, Angewandte Chemie.

[21]  A. Harvey,et al.  Framework for evaluating the performance limits of membraneless electrolyzers , 2020, Energy & Environmental Science.

[22]  D. Psaltis,et al.  The Impact of Surfactants on the Inertial Separation of Bubbles in Microfluidic Electrolyzers , 2020 .

[23]  C. Lamy,et al.  A critical review on the definitions used to calculate the energy efficiency coefficients of water electrolysis cells working under near ambient temperature conditions , 2020 .

[24]  Bo Han,et al.  In-situ investigation and modeling of electrochemical reactions with simultaneous oxygen and hydrogen microbubble evolutions in water electrolysis , 2019, International Journal of Hydrogen Energy.

[25]  G. Wallace,et al.  A new class of bubble-free water electrolyzer that is intrinsically highly efficient , 2019, International Journal of Hydrogen Energy.

[26]  A. Mayyas,et al.  Manufacturing Cost Analysis for Proton Exchange Membrane Water Electrolyzers , 2019 .

[27]  D. Psaltis,et al.  A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine , 2019, Energy & Environmental Science.

[28]  W. Kim,et al.  An autodriven, solar fuel collection for a highly compact, biomimetic-modified artificial leaf without membrane , 2019, Nano Energy.

[29]  Jonathan T. Davis,et al.  High Speed Video Investigation of Bubble Dynamics and Current Density Distributions in Membraneless Electrolyzers , 2019, Journal of The Electrochemical Society.

[30]  R. J. Kriek,et al.  Scalable hydrogen production from a mono-circular filter press Divergent Electrode-Flow-Through alkaline electrolysis stack , 2018, Journal of Power Sources.

[31]  Jinglei Qi,et al.  Floating membraneless PV-electrolyzer based on buoyancy-driven product separation , 2018 .

[32]  R. J. Kriek,et al.  Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack , 2017 .

[33]  D. Esposito Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future , 2017 .

[34]  A. Hawkes,et al.  Future cost and performance of water electrolysis: An expert elicitation study , 2017 .

[35]  T. Mandal,et al.  Microfluidic Electrolyzers for Production and Separation of Hydrogen from Sea Water using Naturally Abundant Solar Energy , 2017 .

[36]  G. O’Neil,et al.  Membraneless electrolyzers for the simultaneous production of acid and base. , 2017, Chemical communications.

[37]  J. Ager,et al.  Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation , 2017 .

[38]  G. Shter,et al.  Photoelectrochemical water splitting in separate oxygen and hydrogen cells. , 2017, Nature materials.

[39]  D. Psaltis,et al.  The potential for microfluidics in electrochemical energy systems , 2016 .

[40]  Paul J. A. Kenis,et al.  Design, fabrication, and characterization of a proposed microchannel water electrolyzer , 2016 .

[41]  Joseph D. Smith,et al.  New Low to Medium Temperature Electrolyte Separation Method and System for Alkaline Water Electrolysis , 2015 .

[42]  R. J. Kriek,et al.  Performance evaluation of a membraneless divergent electrode-flow-through (DEFT) alkaline electrolyser based on optimisation of electrolytic flow and electrode gap , 2015 .

[43]  D. Psaltis,et al.  A membrane-less electrolyzer for hydrogen production across the pH scale , 2015 .

[44]  N. Guillet,et al.  Membrane degradation in PEM water electrolyzer: Numerical modeling and experimental evidence of the influence of temperature and current density , 2015 .

[45]  Devin T. Whipple Microfluidic reactor for the electrochemical reduction of carbon dioxide , 2010 .

[46]  S. Pau,et al.  A planar microfabricated electrolyzer for hydrogen and oxygen generation , 2009 .

[47]  Jun-Y. Park,et al.  Effects of the operation mode on the degradation behavior of anion exchange membrane water electrolyzers , 2021 .

[48]  Jonathan T. Davis,et al.  3D-Printed electrodes for membraneless water electrolysis , 2020 .

[49]  F. Dorado,et al.  Electrochemical reforming of ethanol in a membrane-less reactor configuration , 2020, Chemical Engineering Journal.

[50]  Shu Hu Membrane-less photoelectrochemical devices for H2O2 production: efficiency limit and operational constraint , 2019, Sustainable Energy & Fuels.

[51]  A. Velichenko,et al.  Selection of the Optimal Cathode Material to Synthesize Medical Sodium Hypochlorite Solutions in a Membraneless Electrolyzer , 2018 .

[52]  Andreas Poullikkas,et al.  A comparative overview of hydrogen production processes , 2017 .

[53]  Corey D. Christian,et al.  Hydrogen Production with a Simple and Scalable Membraneless Electrolyzer , 2016 .