Mapping the deformability of natural and designed cellulosomes in solution

[1]  M. Vendruscolo,et al.  Sequence-Based Prediction of Fuzzy Protein Interactions , 2020 .

[2]  M. Vendruscolo,et al.  Sequence-based determinants and prediction of fuzzy interactions in protein complexes. , 2020, Journal of molecular biology.

[3]  Sean P. Gilmore,et al.  Designing chimeric enzymes inspired by fungal cellulosomes , 2020, Synthetic and systems biotechnology.

[4]  B. Henrissat,et al.  The Cellulosome Paradigm in An Extreme Alkaline Environment , 2019, Microorganisms.

[5]  C. S. Lin,et al.  Substrate-Related Factors Affecting Cellulosome-Induced Hydrolysis for Lignocellulose Valorization , 2019, International journal of molecular sciences.

[6]  I. Malavazi,et al.  Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei , 2019, Biotechnology for Biofuels.

[7]  Junichi Higo,et al.  Studies on Molecular Dynamics of Intrinsically Disordered Proteins and Their Fuzzy Complexes: A Mini-Review , 2019, Computational and structural biotechnology journal.

[8]  Neal N. Hengge,et al.  Creation of a functional hyperthermostable designer cellulosome , 2019, Biotechnology for Biofuels.

[9]  S. Pantano,et al.  The SIRAH 2.0 Force Field: Altius, Fortius, Citius. , 2019, Journal of chemical theory and computation.

[10]  E. Bayer,et al.  On the distinct binding modes of expansin and carbohydrate-binding module proteins on crystalline and nanofibrous cellulose: implications for cellulose degradation by designer cellulosomes. , 2018, Physical chemistry chemical physics : PCCP.

[11]  E. Bayer,et al.  Structure–function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes , 2018, The Journal of Biological Chemistry.

[12]  B. Henrissat,et al.  Pan-Cellulosomics of Mesophilic Clostridia: Variations on a Theme , 2017, Microorganisms.

[13]  Sagar M. Utturkar,et al.  Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system , 2017, Biotechnology for Biofuels.

[14]  B. Pletschke,et al.  Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. , 2017, Enzyme and microbial technology.

[15]  E. Bayer,et al.  Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. , 2017, Current opinion in structural biology.

[16]  E. Bayer Cellulosomes and designer cellulosomes: why toy with Nature? , 2017, Environmental microbiology reports.

[17]  E. Bayer,et al.  Lysozyme activity of the Ruminococcus champanellensis cellulosome. , 2016, Environmental microbiology.

[18]  B. Różycki,et al.  Stiffness of the C-terminal disordered linker affects the geometry of the active site in endoglucanase Cel8A. , 2016, Molecular bioSystems.

[19]  M. Cieplak,et al.  Nanoscale Engineering of Designer Cellulosomes , 2016, Advanced materials.

[20]  Sergio Pantano,et al.  SIRAH tools: mapping, backmapping and visualization of coarse-grained models , 2016, Bioinform..

[21]  E. Bayer,et al.  Adaptor Scaffoldins: An Original Strategy for Extended Designer Cellulosomes, Inspired from Nature , 2016, mBio.

[22]  Thibault Annaval,et al.  Characterization of Intersubunit Communication in the Virginiamycin trans-Acyl Transferase Polyketide Synthase. , 2016, Journal of the American Chemical Society.

[23]  Rafael C Bernardi,et al.  Cellulose degradation in the human gut: Ruminococcus champanellensis expands the cellulosome paradigm. , 2016, Environmental microbiology.

[24]  E. Bayer,et al.  Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. , 2016, Environmental microbiology.

[25]  B. L. de Groot,et al.  Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment. , 2015, Journal of chemical theory and computation.

[26]  E. Bayer,et al.  Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker , 2015, PeerJ.

[27]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[28]  B. White,et al.  Ruminococcal cellulosome systems from rumen to human. , 2015, Environmental microbiology.

[29]  Klaus Schulten,et al.  Mapping Mechanical Force Propagation through Biomolecular Complexes. , 2015, Nano letters.

[30]  Marek Cieplak,et al.  Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. , 2015, Journal of structural biology.

[31]  Carsten Kutzner,et al.  Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS , 2015, EASC.

[32]  Johanna Stern,et al.  Significance of Relative Position of Cellulases in Designer Cellulosomes for Optimized Cellulolysis , 2015, PloS one.

[33]  A. Bhattacharya,et al.  Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production , 2015, Biotechnology Letters.

[34]  Leonardo Darré,et al.  SIRAH: a structurally unbiased coarse-grained force field for proteins with aqueous solvation and long-range electrostatics. , 2015, Journal of chemical theory and computation.

[35]  P. B. Pope,et al.  A Polysaccharide Utilization Locus from an Uncultured Bacteroidetes Phylotype Suggests Ecological Adaptation and Substrate Versatility , 2014, Applied and Environmental Microbiology.

[36]  E. Bayer,et al.  Cellulosomics of the cellulolytic thermophile Clostridium clariflavum , 2014, Biotechnology for Biofuels.

[37]  E. Shapiro,et al.  A synthetic biology approach for evaluating the functional contribution of designer cellulosome components to deconstruction of cellulosic substrates , 2013, Biotechnology for Biofuels.

[38]  Edward A. Bayer,et al.  Unraveling enzyme discrimination during cellulosome assembly independent of cohesin–dockerin affinity , 2013, The FEBS journal.

[39]  Dmitri I. Svergun,et al.  Small Angle X-Ray and Neutron Scattering from Solutions of Biological Macromolecules , 2013 .

[40]  E. Bayer,et al.  Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. , 2013, Current opinion in structural biology.

[41]  John A. Tainer,et al.  Accurate assessment of mass, models and resolution by small-angle scattering , 2013, Nature.

[42]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[43]  E. Bayer,et al.  Small Angle X-ray Scattering Analysis of Clostridium thermocellum Cellulosome N-terminal Complexes Reveals a Highly Dynamic Structure* , 2013, The Journal of Biological Chemistry.

[44]  P. Väljamäe,et al.  Endo-exo Synergism in Cellulose Hydrolysis Revisited* , 2012, The Journal of Biological Chemistry.

[45]  E. Bayer,et al.  Scaffoldin Conformation and Dynamics Revealed by a Ternary Complex from the Clostridium thermocellum Cellulosome* , 2012, The Journal of Biological Chemistry.

[46]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[47]  Dominique Durand,et al.  How Random are Intrinsically Disordered Proteins? A Small Angle Scattering Perspective , 2012, Current protein & peptide science.

[48]  Gerhard Hummer,et al.  Structural basis of p38α regulation by hematopoietic tyrosine phosphatase. , 2011, Nature chemical biology.

[49]  B. Pletschke,et al.  Synergy between EngE, XynA and ManA from Clostridium cellulovorans on corn stalk, grass and pineapple pulp substrates , 2011, 3 Biotech.

[50]  Gerhard Hummer,et al.  Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[51]  R. Melero,et al.  Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. , 2011, Journal of molecular biology.

[52]  Greg L. Hura,et al.  X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. , 2011, Quarterly reviews of biophysics.

[53]  G. Hummer,et al.  SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. , 2011, Structure.

[54]  H. Fierobe,et al.  Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. , 2011, Journal of molecular biology.

[55]  Gregg T Beckham,et al.  Modeling the Self-assembly of the Cellulosome Enzyme Complex* , 2010, The Journal of Biological Chemistry.

[56]  E. Bayer,et al.  Interplay between Clostridium thermocellum Family 48 and Family 9 Cellulases in Cellulosomal versus Noncellulosomal States , 2010, Applied and Environmental Microbiology.

[57]  E. Bayer,et al.  Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components. , 2010, Journal of molecular biology.

[58]  G. Harauz,et al.  Fuzzy complexes of myelin basic protein: NMR spectroscopic investigations of a polymorphic organizational linker of the central nervous system. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[59]  G. David,et al.  Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline , 2009 .

[60]  E. Bayer,et al.  Intermodular linker flexibility revealed from crystal structures of adjacent cellulosomal cohesins of Acetivibrio cellulolyticus. , 2009, Journal of molecular biology.

[61]  I. Cann,et al.  Enzymatic deconstruction of xylan for biofuel production , 2009, Global change biology. Bioenergy.

[62]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[63]  Gerhard Hummer,et al.  Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. , 2008, Journal of molecular biology.

[64]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[65]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[66]  Jeremy C. Smith,et al.  Structural Basis of Cellulosome Efficiency Explored by Small Angle X-ray Scattering* , 2005, Journal of Biological Chemistry.

[67]  E. Bayer,et al.  Action of Designer Cellulosomes on Homogeneous Versus Complex Substrates , 2005, Journal of Biological Chemistry.

[68]  M. Hammel,et al.  Structural Insights into the Mechanism of Formation of Cellulosomes Probed by Small Angle X-ray Scattering* , 2004, Journal of Biological Chemistry.

[69]  E. Bayer,et al.  The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. , 2004, Annual review of microbiology.

[70]  F. Mayer,et al.  Structural organization of the intact bacterial cellulosome as revealed by electron microscopy , 2003, Cell biology international.

[71]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[72]  R. Haser,et al.  X-Ray Crystal Structure of the Multidomain Endoglucanase Cel9G from Clostridium cellulolyticum Complexed with Natural and Synthetic Cello-Oligosaccharides , 2003, Journal of bacteriology.

[73]  Dmitri I. Svergun,et al.  Uniqueness of ab initio shape determination in small-angle scattering , 2003 .

[74]  P. Alzari,et al.  The crystal structure and catalytic mechanism of cellobiohydrolase CelS, the major enzymatic component of the Clostridium thermocellum Cellulosome. , 2002, Journal of molecular biology.

[75]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[76]  D I Svergun,et al.  Determination of domain structure of proteins from X-ray solution scattering. , 2001, Biophysical journal.

[77]  Dmitri I. Svergun,et al.  Automated matching of high- and low-resolution structural models , 2001 .

[78]  D I Svergun,et al.  Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. , 1999, Biophysical journal.

[79]  P. Karplus,et al.  Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca , 1997, Nature Structural Biology.

[80]  P Béguin,et al.  A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA , 1996, Journal of bacteriology.

[81]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[82]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[83]  Janet L. Schottel,et al.  A novel variant of the catalytic triad in the Streptomyces scabies esterase , 1995, Nature Structural Biology.

[84]  E. Bayer,et al.  The cellulosome--a treasure-trove for biotechnology. , 1994, Trends in biotechnology.

[85]  E. Bayer,et al.  The nature of the carbohydrate-peptide linkage region in glycoproteins from the cellulosomes of Clostridium thermocellum and Bacteroides cellulosolvens. , 1993, The Journal of biological chemistry.

[86]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[87]  E. Bayer,et al.  Novel O-linked carbohydrate chains in the cellulase complex (cellulosome) of Clostridium thermocellum. 3-O-Methyl-N-acetylglucosamine as a constituent of a glycoprotein. , 1989, The Journal of biological chemistry.

[88]  Michael P. Coughlan,et al.  Macromolecular Organization of the Cellulolytic Enzyme Complex of Clostridium thermocellum as Revealed by Electron Microscopy , 1987, Applied and environmental microbiology.

[89]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[90]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[91]  J. Henzen Publisher's note , 1979, Brain Research.

[92]  E. Bayer,et al.  Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. , 2012, Methods in enzymology.

[93]  P. Lawson,et al.  Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. , 2012, International journal of systematic and evolutionary microbiology.

[94]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[95]  D Vanderspoel,et al.  GROMACS - A PARALLEL COMPUTER FOR MOLECULAR-DYNAMICS SIMULATIONS , 1993 .