A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization

Summary.An additive Schwarz iteration is described for the fast resolution of linear ill-posed problems which are stabilized by Tikhonov regularization. The algorithm and its analysis are presented in a general framework which applies to integral equations of the first kind discretized either by spline functions or Daubechies wavelets. Numerical experiments are reported on to illustrate the theoretical results and to compare both discretization schemes.

[1]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[2]  Frank Natterer,et al.  Regularisierung schlecht gestellter Probleme durch Projektionsverfahren , 1977 .

[3]  C. W. Groetsch,et al.  The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .

[4]  Ullrich Rüde Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .

[5]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[6]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[7]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[8]  Robert Plato,et al.  On the regularization of projection methods for solving III-posed problems , 1990 .

[9]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[10]  J. King,et al.  Multilevel algorithms for ill-posed problems , 1992 .

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  C. Chui,et al.  Wavelets on a Bounded Interval , 1992 .

[13]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[14]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[15]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[16]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations II: Matrix compression and fast solution , 1993, Adv. Comput. Math..

[17]  Ami Harten,et al.  Fast multiresolution algorithms for matrix-vector multiplication , 1994 .

[18]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[19]  D. Donoho Nonlinear Solution of Linear Inverse Problems by Wavelet–Vaguelette Decomposition , 1995 .

[20]  P. Maass,et al.  Wavelet-Galerkin methods for ill-posed problems , 1996 .