Quantum Monte Carlo with reoptimised perturbatively selected configuration-interaction wave functions

ABSTRACT We explore the use in quantum Monte Carlo (QMC) of trial wave functions consisting of a Jastrow factor multiplied by a truncated configuration-interaction (CI) expansion in Slater determinants obtained from a CI perturbatively selected iteratively (CIPSI) calculation. In the CIPSI algorithm, the CI expansion is iteratively enlarged by selecting the best determinants using the perturbation theory, which provides an optimal and automatic way of constructing truncated CI expansions approaching the full CI limit. We perform a systematic study of variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo (DMC) total energies of first-row atoms from B to Ne with different levels of optimisation of the parameters (Jastrow parameters, coefficients of the determinants, and orbital parameters) in these trial wave functions. The results show that the reoptimisation of the coefficients of the determinants in VMC (together with the Jastrow factor) leads to an important lowering of both VMC and DMC total energies, and to their monotonic convergence with the number of determinants. In addition, we show that the reoptimisation of the orbitals is also important in both VMC and DMC for the Be atom when using a large basis set. These reoptimised Jastrow-CIPSI wave functions appear as promising, systematically improvable trial wave functions for QMC calculations.

[1]  P. Hoggan,et al.  Electron correlation in molecules : ab initio beyond gaussian quantum chemistry , 2016 .

[2]  C. J. Umrigar,et al.  Introduction to the variational and diffusion Monte Carlo methods , 2015, 1508.02989.

[3]  Michel Caffarel,et al.  Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions. , 2014, The Journal of chemical physics.

[4]  A. Scemama,et al.  Accurate nonrelativistic ground-state energies of 3d transition metal atoms. , 2014, The Journal of chemical physics.

[5]  Michel Caffarel,et al.  Using perturbatively selected configuration interaction in quantum Monte Carlo calculations , 2013 .

[6]  Jeongnim Kim,et al.  Multideterminant Wave Functions in Quantum Monte Carlo. , 2012, Journal of chemical theory and computation.

[7]  C. Amovilli,et al.  Size-Extensive Wave Functions for Quantum Monte Carlo: A Linear Scaling Generalized Valence Bond Approach. , 2012, Journal of chemical theory and computation.

[8]  C J Umrigar,et al.  Approaching chemical accuracy with quantum Monte Carlo. , 2012, The Journal of chemical physics.

[9]  W. Lester,et al.  Quantum Monte Carlo and related approaches. , 2012, Chemical reviews.

[10]  P. Hoggan,et al.  Advances in the Theory of Quantum Systems in Chemistry and Physics , 2012 .

[11]  C. Umrigar,et al.  Quantum Monte Carlo with Jastrow-valence-bond wave functions. , 2011, The Journal of chemical physics.

[12]  R. Needs,et al.  Quantum Monte Carlo study of the first-row atoms and ions. , 2010, The Journal of chemical physics.

[13]  M. Caffarel,et al.  Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo. , 2010, The Journal of chemical physics.

[14]  Amos G. Anderson,et al.  Generalized valence bond wave functions in quantum Monte Carlo. , 2010, The Journal of chemical physics.

[15]  Paul R C Kent,et al.  Systematic reduction of sign errors in many-body calculations of atoms and molecules. , 2010, Physical review letters.

[16]  C. Umrigar,et al.  Excited states of methylene from quantum Monte Carlo. , 2009, The Journal of chemical physics.

[17]  M. Casula,et al.  Resonating valence bond wave function with molecular orbitals: application to first-row molecules. , 2009, The Journal of chemical physics.

[18]  C J Umrigar,et al.  Full optimization of Jastrow-Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. , 2008, The Journal of chemical physics.

[19]  K. Schmidt,et al.  Pfaffian pairing and backflow wavefunctions for electronic structure quantum Monte Carlo methods , 2006, cond-mat/0610850.

[20]  R J Needs,et al.  Energies of the first row atoms from quantum Monte Carlo. , 2007, The Journal of chemical physics.

[21]  C J Umrigar,et al.  Optimization of quantum Monte Carlo wave functions by energy minimization. , 2007, The Journal of chemical physics.

[22]  C. Umrigar,et al.  Alleviation of the Fermion-sign problem by optimization of many-body wave functions. , 2006, Physical review letters.

[23]  R J Needs,et al.  Inhomogeneous backflow transformations in quantum Monte Carlo calculations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Schmidt,et al.  Pfaffian pairing wave functions in electronic-structure quantum Monte Carlo simulations. , 2005, Physical review letters.

[25]  A. Scemama,et al.  Simple and efficient approach to the optimization of correlated wave functions , 2005, cond-mat/0511278.

[26]  C. Umrigar,et al.  Quantum Monte Carlo study of composite fermions in quantum dots: The effect of Landau-level mixing , 2005 .

[27]  S. Sorella Wave function optimization in the variational Monte Carlo method , 2005, cond-mat/0502553.

[28]  C. Umrigar,et al.  Energy and variance optimization of many-body wave functions. , 2004, Physical review letters.

[29]  P. Wormer,et al.  Theory and Applications of Computational Chemistry The First Forty Years , 2005 .

[30]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[31]  M. Casula,et al.  Correlated geminal wave function for molecules: an efficient resonating valence bond approach. , 2004, The Journal of chemical physics.

[32]  M. Casula,et al.  Geminal wave functions with Jastrow correlation: A first application to atoms , 2003, cond-mat/0305169.

[33]  Rafael López,et al.  Polarized basis sets of Slater‐type orbitals: H to Ne atoms , 2003, J. Comput. Chem..

[34]  M. Nightingale,et al.  Optimization of ground- and excited-state wave functions and van der Waals clusters. , 2000, Physical review letters.

[35]  S. Sorella Generalized Lanczos algorithm for variational quantum Monte Carlo , 2000, cond-mat/0009149.

[36]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[37]  Celestino Angeli,et al.  On a mixed Møller-Plesset Epstein-Nesbet partition of the Hamiltonian to be used in multireference perturbation configuration interaction , 2000 .

[38]  John A. Pople,et al.  Nobel Lecture: Quantum chemical models , 1999 .

[39]  Walter Kohn,et al.  Nobel Lecture: Electronic structure of matter-wave functions and density functionals , 1999 .

[40]  S. Fahy,et al.  Optimal orbitals from energy fluctuations in correlated wave functions , 1999, cond-mat/9906305.

[41]  C. Umrigar Variational Monte Carlo Basics and Applications to Atoms and Molecules , 1999 .

[42]  C. Umrigar,et al.  Quantum Monte Carlo methods in physics and chemistry , 1999 .

[43]  M. Persico,et al.  Multireference perturbation CI II. Selection of the zero-order space , 1997 .

[44]  William A. Lester,et al.  Recent Advances in Quantum Monte Carlo Methods , 1997 .

[45]  A. Savin,et al.  Quantum Monte Carlo Calculations with Multi-Reference Trial Wave Functions , 1997 .

[46]  Claudia Filippi,et al.  Multiconfiguration wave functions for quantum Monte Carlo calculations of first‐row diatomic molecules , 1996 .

[47]  A. Savin,et al.  A new Jastrow factor for atoms and molecules, using two‐electron systems as a guiding principle , 1995 .

[48]  A. Savin,et al.  A systematic study on the fixed-node and localization error in quantum Monte Carlo calculations with pseudopotentials for group III elements , 1994 .

[49]  C. Umrigar,et al.  A diffusion Monte Carlo algorithm with very small time-step errors , 1993 .

[50]  Umrigar,et al.  Accelerated Metropolis method. , 1993, Physical review letters.

[51]  Davidson,et al.  Ground-state correlation energies for atomic ions with 3 to 18 electrons. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[52]  A. Savin,et al.  Reduction of the computational effort in quantum Monte Carlo calculations with pseudopotentials through a change of the projection operators , 1992 .

[53]  Robert J. Harrison,et al.  Approximating full configuration interaction with selected configuration interaction and perturbation theory , 1991 .

[54]  Renzo Cimiraglia,et al.  Recent advances in multireference second order perturbation CI: The CIPSI method revisited , 1987 .

[55]  F. Illas,et al.  Convergence of a multireference second-order mbpt method (CIPSI) using a zero-order wavefunction derived from an MS SCF calculation , 1986 .

[56]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[57]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[58]  M. H. Kalos,et al.  A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH , 1982 .

[59]  Robert J. Buenker,et al.  Development of a Computational Strategy in Electronic Structure Calculations: Error Analysis in Configuration Interaction Treatments , 1981 .

[60]  Imre G. Csizmadia,et al.  Computational Theoretical Organic Chemistry , 1981 .

[61]  James B. Anderson,et al.  Quantum chemistry by random walk. H 2P, H+3D3h1A′1, H23Σ+u, H41Σ+g, Be 1S , 1976 .

[62]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[63]  Robert J. Buenker,et al.  Individualized configuration selection in CI calculations with subsequent energy extrapolation , 1974 .

[64]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[65]  R. Grimm,et al.  Monte-Carlo solution of Schrödinger's equation☆ , 1971 .

[66]  R. Stewart Small Gaussian Expansions of Slater‐Type Orbitals , 1970 .

[67]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[68]  Ernest R. Davidson,et al.  Studies in Configuration Interaction: The First-Row Diatomic Hydrides , 1969 .

[69]  R. Nesbet Configuration interaction in orbital theories , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  P. S. Epstein,et al.  The Stark effect from the point of view of Schroedinger's quantum theory , 1926 .