Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors.

Organic molecules can alter inorganic microstructures, offering a very powerful tool for the design of novel materials. In biological systems, this tool is often used to create microstructures in which the organic manipulators are a minority component. Three groups of materials-biomaterials, ceramics, and semiconductors-have been selected to illustrate this concept as used by nature and by synthetic laboratories exploring its potential in materials technology. In some of nature's biomaterials, macromolecules such as proteins, glycoproteins, and polysaccharides are used to control nucleation and growth of mineral phases and thus manipulate microstructure and physical properties. This concept has been used synthetically to generate apatite-based materials that can function as artificial bone in humans. Synthetic polymers and surfactants can also drastically change the morphology of ceramic particles, impart new functional properties, and provide new processing methods for the formation of useful objects. Interesting opportunities also exist in creating semiconducting materials in which molecular manipulators connect quantum dots or template cavities, which change their electronic properties and functionality.

[1]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[2]  T J Beveridge,et al.  Participation of a cyanobacterial S layer in fine-grain mineral formation , 1992, Journal of bacteriology.

[3]  R. Schrock,et al.  Synthesis of zinc sulfide and cadmium sulfide within ROMP block copolymer microdomains , 1992 .

[4]  M. Pileni,et al.  Reverse micelles as microreactors , 1993 .

[5]  Weimann,et al.  Electron pinball and commensurate orbits in a periodic array of scatterers. , 1991, Physical review letters.

[6]  S. Weiner,et al.  Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.

[7]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[8]  P. C. Rieke,et al.  Ceramic Thin-Film Formation on Functionalized Interfaces Through Biomimetic Processing , 1994, Science.

[9]  N A Peppas,et al.  New challenges in biomaterials. , 1994, Science.

[10]  J. Fendler Membrane-mimetic approach to advanced materials , 1994 .

[11]  P. C. Rieke,et al.  Self-assembly in the synthesis of ceramic materials and composites , 1996 .

[12]  P. Schultz,et al.  Synthesis and Isolatin of a Homodimer of Cadmium Selenide Nanocrystals , 1997 .

[13]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[14]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[15]  C. C. Harrison,et al.  Evidence for intramineral macromolecules containing protein from plant silicas. , 1996, Phytochemistry.

[16]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[17]  S. Stupp,et al.  Counterion effects in liquid crystal templating of nanostructured CdS , 1997 .

[18]  B. Schulz,et al.  A "Double-Diamond Superlattice" Built Up of Cd17S4(SCH2CH2OH)26 Clusters , 1995, Science.

[19]  W. Tong,et al.  Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts , 1997 .

[20]  J. M. Nicol,et al.  Cooperative organization of inorganic-surfactant and biomimetic assemblies , 1995, Science.

[21]  D. Fortin,et al.  Mineralization of bacterial surfaces , 1996 .

[22]  Jerry Avorn Technology , 1929, Nature.

[23]  Geoffrey A. Ozin,et al.  Free-standing and oriented mesoporous silica films grown at the air–water interface , 1996, Nature.

[24]  C. Brinker Sol-gel science , 1990 .

[25]  Ying Wang,et al.  Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core , 1993, Science.

[26]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[27]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[28]  C. Becze,et al.  New microstructural model of polymer-ceramic nanocomposite materials , 1997 .

[29]  Jeffrey A. Hubbell,et al.  Biomaterials in Tissue Engineering , 1995, Bio/Technology.

[30]  P. Messersmith,et al.  High-temperature chemical and microstructural transformations of a nanocomposite organoceramic , 1995 .

[31]  A. Lehninger,et al.  CALCIUM PHOSPHATE GRANULES IN THE HEPATOPANCREAS OF THE BLUE CRAB CALLINECTES SAPIDUS , 1974, The Journal of cell biology.

[32]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[33]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[34]  P. C. Rieke,et al.  Spatially resolved mineral deposition on patterned self-assembled monolayers , 1994 .

[35]  M. Deighton Fracture of Brittle Solids , 1976 .

[36]  S. Stupp,et al.  Organoapatites: materials for artificial bone. I. Synthesis and microstructure. , 1992, Journal of biomedical materials research.

[37]  S. Stupp,et al.  Semiconducting superlattices templated by molecular assemblies , 1996, Nature.

[38]  G. Ozin,et al.  Synthesis of oriented films of mesoporous silica on mica , 1996, Nature.

[39]  S. T. Wu Advanced Earth-to-orbit propulsion technology information, dissemination and research , 1993 .

[40]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[41]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[42]  A. S. Posner,et al.  Properties of nucleating systems , 1978 .

[43]  Q. Huo,et al.  Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures , 1993, Science.

[44]  G. B. Olson,et al.  Innovations in Ultrahigh-Strength Steel Technology , 1990 .

[45]  Pierre M. Petroff,et al.  Generalized synthesis of periodic surfactant/inorganic composite materials , 1994, Nature.