Hierarchically ordered mesoporous TiO2 nanofiber bundles derived from natural collagen fibers for lithium and sodium storage

[1]  Y. Cai,et al.  Hierarchical porous flower-like TiO2-B constructed by thin nanosheets for efficient lithium storage , 2017 .

[2]  C. Li,et al.  Hierarchical CuO octahedra inherited from copper metal–organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance , 2017 .

[3]  Jicai Liang,et al.  TiO2 Hollow Nanocrystals/Carbon Nanotubes Nanocomposite and Their Application in Lithium‐Ion Batteries , 2017 .

[4]  Jie Lian,et al.  Toward ultrafast lithium ion capacitors: A novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode , 2017 .

[5]  X. Gu,et al.  Ultrafine TiO2 Nanoparticles Confined in N‐Doped Porous Carbon Networks as Anodes of High‐Performance Sodium‐Ion Batteries , 2017 .

[6]  S. Nair,et al.  Surfactant-assisted synthesis of porous TiO2 nanofibers as an anode material for secondary lithium ion batteries , 2017 .

[7]  D. Yan,et al.  Porous cake-like TiO2 derived from metal-organic frameworks as superior anode material for sodium ion batteries , 2017 .

[8]  Yun Zhang,et al.  Nitrogen‐Doped Graphene Ribbon Assembled Core–Sheath MnO@Graphene Scrolls as Hierarchically Ordered 3D Porous Electrodes for Fast and Durable Lithium Storage , 2016 .

[9]  Stanislaus S. Wong,et al.  Correlating Titania Nanostructured Morphologies with Performance as Anode Materials for Lithium-Ion Batteries , 2016 .

[10]  Chunzhong Li,et al.  Performance optimization in dye-sensitized solar cells with β-NaYF4:Yb3+,Er3+@SiO2@TiO2 mesoporous microspheres as multi-functional photoanodes , 2016 .

[11]  P. Stroeve,et al.  Template-based syntheses for shape controlled nanostructures. , 2016, Advances in colloid and interface science.

[12]  F. Huang,et al.  Carbon cloth supported anatase TiO2 aligned arrays as a high-performance anode material for Li-ion batteries , 2016 .

[13]  A. S. Nair,et al.  TiO2 fibre/particle nanohybrids as efficient anodes for lithium-ion batteries , 2016 .

[14]  H. Wu,et al.  Solvothermal coating LiNi0.8Co0.15Al0.05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials , 2016 .

[15]  Yun Zhang,et al.  Hierarchical carambola-like Li4Ti5O12-TiO2 composites as advanced anode materials for lithium-ion batteries , 2016 .

[16]  Yi Guo,et al.  Flakelike LiCoO2 with Exposed {010} Facets As a Stable Cathode Material for Highly Reversible Lithium Storage. , 2016, ACS applied materials & interfaces.

[17]  Xiaobo Ji,et al.  Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life , 2015, Advanced materials.

[18]  Xiaobo Ji,et al.  Enhanced sodium storage behavior of carbon coated anatase TiO2 hollow spheres , 2015 .

[19]  Mietek Jaroniec,et al.  High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams , 2015, Advanced materials.

[20]  Xiaobo Ji,et al.  Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries , 2015 .

[21]  C. Bohling,et al.  Conductivity dependence of lithium diffusivity and electrochemical performance for electrospun TiO2 fibers , 2015 .

[22]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[23]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[24]  Yu‐Guo Guo,et al.  Highly Disordered Carbon as a Superior Anode Material for Room‐Temperature Sodium‐Ion Batteries , 2014 .

[25]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[26]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[27]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[28]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[29]  Kyu-Nam Jung,et al.  High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries , 2013 .

[30]  A. Rai,et al.  Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries , 2013 .

[31]  Palani Balaya,et al.  Na2Ti3O7: an intercalation based anode for sodium-ion battery applications , 2013 .

[32]  D. Zhao,et al.  Mesoporous titania: From synthesis to application , 2012 .

[33]  H. Wu,et al.  Antibacterial activity of silver nanoparticles stabilized on tannin-grafted collagen fiber , 2012 .

[34]  X. Lou,et al.  Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. , 2012, Nanoscale.

[35]  Feng Li,et al.  Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. , 2012, ACS nano.

[36]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[37]  T. Abe,et al.  In Situ AFM Study of Surface Film Formation on the Edge Plane of HOPG for Lithium-Ion Batteries , 2011 .

[38]  H. Wu,et al.  One-step in situassembly of size-controlled silver nanoparticles on polyphenol-grafted collagen fiber with enhanced antibacterial properties , 2011 .

[39]  Zongping Shao,et al.  Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO2 hollow fibers† , 2011 .

[40]  Seeram Ramakrishna,et al.  Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles , 2010 .

[41]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[42]  Ji‐Guang Zhang,et al.  Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. , 2009, ACS nano.

[43]  H. Wu,et al.  Synthesis of unique mesoporous ZrO2-carbon fiber from collagen fiber , 2008 .

[44]  J. Kerr,et al.  An Investigation of the Effect of Graphite Degradation on Irreversible Capacity in Lithium-ion Cells , 2008 .

[45]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[46]  Robert W. Thompson,et al.  Formation and Growth of Surface Films on Graphitic Anode Materials for Li-Ion Batteries , 2005 .

[47]  B. Shi,et al.  Collagen-Fiber-Immobilized Tannins and Their Adsorption of Au(III) , 2004 .

[48]  Xueping Gao,et al.  Preparation and Electrochemical Characterization of Anatase Nanorods for Lithium-Inserting Electrode Material , 2004 .

[49]  A. Covington Modern tanning chemistry , 1997 .

[50]  M. Yoshio,et al.  Studies on an LiMnO spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4 , 1995 .

[51]  N. Meethong,et al.  Synthesis and characterization of stable and binder-free electrodes of TiO 2 nanofibers for li-ion batteries , 2013 .

[52]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[53]  E. Barrett,et al.  (CONTRIBUTION FROM THE MULTIPLE FELLOWSHIP OF BAUGH AND SONS COMPANY, MELLOX INSTITUTE) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms , 1951 .