Relative perturbation theory. III. More bounds on eigenvalue variation
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Ren-Cang Li. Relative Perturbation Theory: I. Eigenvalue and Singular Value Variations , 1998, SIAM J. Matrix Anal. Appl..
[3] Ren-Cang Li,et al. Relative Perturbation Theory: II. Eigenspace and Singular Subspace Variations , 1996, SIAM J. Matrix Anal. Appl..
[4] Ren-Cang Li,et al. Some inequalities for commutators and an application to spectral variation. II , 1997 .
[5] Shmuel Friedland,et al. Singular values, doubly stochastic matrices, and applications , 1995 .
[6] Chandler Davis,et al. Some inequalities for communtators and an application to spectral variation , 1990 .
[7] James Demmel,et al. Accurate Singular Values of Bidiagonal Matrices , 1990, SIAM J. Sci. Comput..
[8] A. Ostrowski,et al. A QUANTITATIVE FORMULATION OF SYLVESTER'S LAW OF INERTIA, II. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[9] A. Hoffman,et al. The variation of the spectrum of a normal matrix , 1953 .