Macrospin modeling of sub-ns pulse switching of perpendicularly magnetized free layer via spin-orbit torques for cryogenic memory applications

We model, using the macrospin approximation, the magnetic reversal of a perpendicularly magnetized nanostructured free layer formed on a normal, heavy-metal nanostrip, subjected to spin-orbit torques (SOTs) generated by short (≤0.5 ns) current pulses applied to the nanostrip, to examine the potential for SOT-based fast, efficient cryogenic memory. Due to thermal fluctuations, if solely an anti-damping torque is applied, then, for a device with sufficiently low anisotropy ( Hanis0 ∼ 1 kOe) suitable for application in cryogenic memory, a high magnetic damping parameter ( α∼0.1−0.2) is required for reliable switching over a significant variation of pulse current. The additional presence of a substantial field-like torque improves switching reliability even for low damping ( α≤0.03).

[1]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[2]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[3]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[4]  J. W. Brown Thermal Fluctuations of a Single-Domain Particle , 1963 .

[5]  Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin pumping , 2013, 1301.5861.

[6]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[7]  Bernard Rodmacq,et al.  100 ps precessional spin-transfer switching of a planar magnetic random access memory cell with perpendicular spin polarizer , 2009 .

[8]  T. Kato,et al.  Compositional Dependence of g-Factor and Damping Constant of GdFeCo Amorphous Alloy Films , 2008, IEEE Transactions on Magnetics.

[9]  Hjm Henk Swagten,et al.  Magnetization dynamics and Gilbert damping in ultrathin Co48Fe32B20 films with out-of-plane anisotropy , 2009 .

[10]  W. Bailey,et al.  Dopants for independent control of precessional frequency and damping in Ni81Fe19 (50 nm) thin films , 2003 .

[11]  F. Freimuth,et al.  Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. , 2013, Nature nanotechnology.

[12]  G. Bertotti,et al.  Stochastic Magnetization Dynamics , 2009 .

[13]  Robert A. Buhrman,et al.  Spin-torque-driven ballistic precessional switching with 50 ps impulses , 2011 .

[14]  Huaiwu Zhang,et al.  Observation of the nonlocal spin-orbital effective field , 2013, Nature Communications.

[15]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[16]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[17]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[18]  J. Dahn,et al.  Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum , 2006 .

[19]  Mei Wang,et al.  Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers , 2013, Applied Physics Letters.

[20]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[21]  Enhancement of Perpendicular Magnetic Anisotropy and Transmission of Spin-Hall-Effect-Induced Spin Currents by a Hf Spacer Layer in W/Hf/CoFeB/MgO Layer , 2014, 1401.4617.

[22]  P C Hammel,et al.  Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. , 2014, Physical review letters.

[23]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[24]  S. Russek,et al.  Magnetostriction and angular dependence of ferromagnetic resonance linewidth in Tb-doped Ni0.8Fe0.2 thin films , 2002 .

[25]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[26]  Gerrit E. W. Bauer,et al.  Nonlocal magnetization dynamics in ferromagnetic heterostructures , 2005 .

[27]  A. Kent,et al.  Spin-transfer-induced precessional magnetization reversal , 2004 .

[28]  Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse , 2009, 0906.2585.

[29]  H. Ohno,et al.  Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. , 2012, Nature materials.

[30]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[31]  J. Katine,et al.  Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices , 2010 .

[32]  Ki-Seung Lee,et al.  Threshold current for switching of a perpendicular magnetic layer induced by spin Hall effect , 2013 .

[33]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[34]  R. P. Robertazzi,et al.  Effect of subvolume excitation and spin-torque efficiency on magnetic switching , 2011 .

[35]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[36]  Kevin Garello,et al.  Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction , 2013, 1310.8235.

[37]  Shoji Ikeda,et al.  Three terminal magnetic tunnel junction utilizing the spin Hall effect of iridium-doped copper , 2013 .