Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case

[1]  S. Jitomirskaya,et al.  Power Law Subordinacy and Singular Spectra.¶II. Line Operators , 2000 .

[2]  S. Jitomirskaya Metal-insulator transition for the almost Mathieu operator , 1999, math/9911265.

[3]  P. Kargaev,et al.  Effective masses and conformal mappings , 1995 .

[4]  L. H. Eliasson,et al.  Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation , 1992 .

[5]  M. Kohmoto,et al.  ELECTRONIC SPECTRAL AND WAVEFUNCTION PROPERTIES OF ONE-DIMENSIONAL QUASIPERIODIC SYSTEMS: A SCALING APPROACH , 1992 .

[6]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[7]  T. Spencer,et al.  Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .

[8]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[9]  D. Pearson,et al.  On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .

[10]  M. Wilkinson Tunnelling between tori in phase space , 1986 .

[11]  V. Buslaev Adiabatic perturbation of a periodic potential , 1984 .

[12]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[13]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[14]  B. Simon Almost periodic Schrödinger operators: A Review , 1982 .

[15]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[16]  H. McKean,et al.  The spectrum of Hill's equation , 1975 .

[17]  F. Klopp,et al.  COEXISTENCE OF DIFFERENT SPECTRAL TYPES FOR ALMOST PERIODIC SCHRODINGER EQUATIONS IN DIMENSION ONE , 1999 .

[18]  F. Klopp,et al.  Transitions d’Anderson pour des opérateurs de Schrödinger quasi-périodiques en dimension 1 , 1999 .

[19]  T. Janssen Aperiodic Schrödinger Operators , 1997 .

[20]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[21]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[22]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[23]  Y. Sinai,et al.  The one-dimensional Schrödinger equation with a quasiperiodic potential , 1975 .

[24]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[25]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[26]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .