Two-loop Bhabha scattering in QED: Vertex and one-loop by one-loop contributions

In the context of pure QED, we obtain analytic expressions for the contributions to the Bhabha scattering differential cross section at order {alpha}{sup 4}, which originate from the interference of two-loop photonic vertices with tree-level diagrams and from the interference of one-loop photonic diagrams amongst themselves. The ultraviolet renormalization is carried out. The IR-divergent soft-photon emission corrections are evaluated and added to the virtual cross section. The cross section obtained in this manner is valid for on-shell electrons and positrons of finite mass and for arbitrary values of the center of mass energy and momentum transfer. We provide the expansion of our results in powers of the electron mass, and we compare them with the corresponding expansion of the complete order {alpha}{sup 4} photonic cross section, recently obtained by A. A. Penin [Phys. Rev. Lett. 95, 010408 (2005).]. As a by-product, we obtain the contribution to the Bhabha scattering differential cross section of the interference of the two-loop photonic boxes with the tree-level diagrams, up to terms suppressed by positive powers of the electron mass. We evaluate numerically the various contributions to the cross section, paying particular attention to the comparison between exact and expanded results.

[1]  C. G. Bollini,et al.  Lowest order “divergent” graphs in v-dimensional space , 1972 .

[2]  S. Laporta,et al.  difference equations , 2001 .

[3]  T.Gehrmann,et al.  Two-Loop Master Integrals for $\gamma^* \to 3$ Jets: The planar topologies , 2000 .

[4]  G. Hooft,et al.  Regularization and Renormalization of Gauge Fields , 1972 .

[5]  A. Kotikov Differential equation method: The Calculation of N point Feynman diagrams , 1991 .

[6]  M. Consoli One-loop corrections to e+e− → e+e− in the weinberg model☆ , 1979 .

[7]  R. Bonciani,et al.  Two-loop NF=1 QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section , 2005 .

[8]  T. Riemann,et al.  Massive two-loop Bhabha scattering — the factorizable subset , 2002, hep-ph/0211167.

[9]  R. Bonciani,et al.  Vertex diagrams for the QED form factors at the 2-loop level , 2003 .

[10]  R. Bonciani,et al.  Erratum to: "Vertex diagrams for the QED form factors at the 2-loop level" [Nucl. Phys. B 661 (2003) 289] , 2004 .

[11]  Alexander A Penin Two-loop corrections to Bhabha scattering. , 2005, Physical review letters.

[12]  Giovanni M. Cicuta,et al.  Analytic renormalization via continuous space dimension , 1972 .

[13]  Differential equations for Feynman graph amplitudes , 1997, hep-th/9711188.

[14]  P. Osland,et al.  Decorated-box-diagram contributions to Bhabha scattering. (II) , 1993, hep-ph/9304212.

[15]  Ettore Remiddi,et al.  Electron form factors up to fourth order. - I , 1972 .

[16]  R. Bonciani,et al.  QED vertex form factors at two loops , 2003, hep-ph/0307295.

[17]  A. Kotikov,et al.  Differential equations method: the calculation of vertex-type Feynman diagrams , 1991 .

[18]  G. Heinrich,et al.  Analytical evaluation of dimensionally regularized massive on-shell double boxes , 2004, hep-ph/0406053.

[19]  D. J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .

[20]  R. Bonciani,et al.  Two-Loop NF = 1 QED Bhabha Scattering Differential Cross Section , 2004, hep-ph/0405275.

[21]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[22]  R. Barbieri,et al.  Electron form factors up to fourth order. - II , 1972 .

[23]  J. Vermaseren,et al.  Harmonic Polylogarithms , 1999, hep-ph/9905237.

[24]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[25]  G. Passarino,et al.  The Standard Model in the Making: Precision Study of the Electroweak Interactions , 1999 .

[26]  John Ellis,et al.  Int. J. Mod. Phys. , 2005 .

[27]  L. Trentadue,et al.  Hard pair production in large angle Bhabha scattering , 1996 .

[28]  David J. Broadhurst Massive 3-loop Feynman diagrams reducible to SC , 1999 .

[29]  T. Riemann,et al.  Master integrals for massive two-loop Bhabha scattering in QED , 2004, hep-ph/0412164.

[30]  F. Tkachov A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .

[31]  R. Bonciani,et al.  Planar box diagram for the (NF=1) 2-loop QED virtual corrections to Bhabha scattering , 2003, hep-ph/0310333.

[32]  Analytic continuation of massless two-loop four-point functions , 2002, hep-ph/0207020.

[33]  L. Dixon,et al.  Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.

[34]  J. F. Ashmore,et al.  A method of gauge-invariant regularization , 1972 .

[35]  E. Remiddi,et al.  The analytical value of the electron (g − 2) at order α3 in QED , 1996 .

[36]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[37]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  M. Bohm,et al.  Radiative corrections to Bhabha scattering at high energies (I): Virtual and soft photon corrections , 1988 .

[40]  S. Catani The singular behaviour of QCD amplitudes at two-loop order , 1998, hep-ph/9802439.

[41]  T.Gehrmann,et al.  Numerical evaluation of two-dimensional harmonic polylogarithms , 2002 .

[42]  R. Gastmans,et al.  Dimensional regularization of the infrared problem , 1973 .